Le temps astronomique


Les mouvements de la Terre

Les mouvements de la Terre autour de son axe ou autour du Soleil semblent immuables, réguliers, uniformes et paraissent parfaits pour concrétiser une échelle de temps qui doit être, elle-aussi, immuable, régulière et uniforme. Ainsi, la rotation de la Terre autour de son axe définit le jour et la révolution de la Terre autour du Soleil définit l'année.

unjourunan.png
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou

Pour définir parfaitement le mouvement de la Terre, il faut connaître :


Définition du jour

Si on considère une direction fixe dans l'espace, il faudra 23h 56m 4s à un observateur pour se retrouver dans la même direction après un tour complet de la Terre autour de son axe. Mais ce n'est pas cette durée qui est la plus facile à percevoir. On aura beaucoup plus l'impression que la Terre a accompli un tour si c'est le Soleil qui revient à la même position. C'est ce retour du Soleil dans la même direction qui définit le jour qui lui, dure en moyenne, 24 heures. En effet, la Terre s'est déplacée et le Soleil ne correspond pas à une direction fixe.

Le jour n'est pas, a priori, une simple unité de temps pour compter des durées, mais c'est plutôt un intervalle de temps centré sur une période de "jour" et encadré par des périodes de "nuit". Nous allons donc définir le jour comme la durée qui sépare deux passages consécutifs du Soleil à son point culminant, c'est-à-dire au "méridien" du lieu. Mais une telle durée est variable : pourquoi ?

jour.jpg
Définition du jour à partir de la rotation de la Terre autour de son axe
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou + image NASA

Tout d'abord, et nous le verrons plus loin (lois de Kepler), l'orbite apparente du Soleil autour de la Terre (en fait, l'orbite réelle de la Terre autour du Soleil) n'est pas un cercle mais une ellipse : ainsi la vitesse apparente du Soleil sur la sphère céleste va varier selon sa position sur sa trajectoire. Le Soleil passera donc au méridien soit en avance quand il va plus vite, soit en retard quand il ralentit, par rapport à une position moyenne. Pour que nos jours aient la même durée et donc que nos heures soient régulières (et que midi n'arrive pas un peu en avance ou un peu en retard), on construit une position moyenne théorique du Soleil sur l'année (le Soleil moyen, par opposition au Soleil vrai) qui définira le Temps moyen, échelle de temps qui a été en usage jusque dans les années 1970. La définition officielle de cette échelle de temps était : "l'heure légale en France est le temps moyen de Paris retardé de 9m 21s et augmenté de douze heures (c'est la définition du Temps Universel internationalement reconnu) et aussi augmenté de deux heures en été et d'une heure en hiver (c'est l'heure d'été ou l'heure d'hiver)". Le retard de 9m 21s sert à nous mettre à l'heure du méridien international (Greenwich). L'avance de douze heures sert à faire commencer le jour à minuit (c'est plus pratique car le temps moyen fait débuter le jour à midi au moment du passage du Soleil au méridien). Enfin le décalage d'une heure ou de deux heures nous donne l'heure d'été ou l'heure d'hiver. Les fuseaux horaires sont là pour permettre un décalage similaire pour les pays situés loin du méridien international.


Temps vrai, temps moyen

C'est cette différence entre le Soleil moyen et le Soleil vrai qui nous fait dire en janvier : "tiens, les jours rallongent plus le soir que le matin". En fait, c'est le midi vrai qui se déplace et arrive de plus en plus tard par rapport au midi moyen. Cet écart entre le midi moyen et le midi vrai est évidemment fondamental lorsque l'on construit un cadran solaire qui lui, va donner le temps vrai du lieu. Cette différence est appelée "équation du temps". Elle atteint 16 minutes au maximum fin octobre.

L'équation du temps est en fait la résultante de deux effets :

Plus simplement, disons que la Terre tourne autour de son axe dans le plan de l'équateur et autour du Soleil dans le plan de l'écliptique. C'est l'avance (ou le retard) du Soleil, par rapport à un mouvement uniforme dans l'écliptique, qui doit se projeter sur l'équateur.

475.jpg
Equation du temps (en minutes) pour 1999
Crédit : IMCCE/BDL
848.jpg
Concrétisation de l'équation du temps dans le ciel. L'image ci-dessus montre l'effet de l'équation du temps. On a superposé des images du Soleil prises de 10 jours en 10 jours le matin à la même heure.
Crédit : Observatoire de Naucny/V. Rumyantser

Les échelles de temps

Du fait de l'augmentation de la précision dans la mesure du temps, les échelles utilisées ont rapidement évolué.

La rotation diurne de la Terre autour de son axe a longtemps semblé suffisamment uniforme pour servir de base à l'échelle de temps utilisée par les astronomes et appelée Temps universel. Dans cette échelle de temps, la seconde est définie comme étant égale à 1/86400 jour solaire moyen. Mais on s'est aperçu que la Terre ralentissait en constatant, par exemple, que la Lune s'éloignait de la Terre d'une manière qui n'était pas en accord avec les calculs théoriques. L'erreur ne provenait pas de ces calculs, mais du fait que le Temps universel n'était pas une échelle de temps uniforme.

Cela a conduit les astronomes à construire une autre échelle de temps fondée sur le mouvement orbital (révolution) de la Terre autour du Soleil. Cette nouvelle échelle de temps légalement en usage entre 1960 et 1967 s'appelle le temps des éphémérides. Elle est fondée sur l'observation de la longitude du Soleil dans le ciel au cours de l'année. L'équation qui définit numériquement la longitude du Soleil a été donnée par Newcomb et a été adoptée officiellement en 1952 par l'Union astronomique internationale. C'est un polynôme du second degré du temps. Si donc on observe la longitude du Soleil on en déduit aisément l'instant correspondant dans l'échelle de temps des éphémérides. En 1960 la onzième conférence générale des poids et mesures décida que la seconde est la fraction 1/31556925.9747 de l'année tropique pour le 0 janvier 1900 à 12 heures du temps des éphémérides.

La durée de l'année n'est cependant pas vraiment stable non plus et on a été amené à nouveau à changer d'échelle de temps. On utilise actuellement depuis 1967 une échelle de temps construite différemment, une échelle physique et non plus astronomique : on fabrique, à l'aide d'horloges atomiques (mesurant les fréquences des atomes), une "seconde" particulièrement stable. On va alors ajouter ces secondes les unes derrière les autres pour fabriquer une échelle de temps uniforme : le Temps atomique international, indépendant des mouvements célestes. Le Temps atomique international est une moyenne des horloges atomiques réparties dans le monde. Les effets relativistes montrent que cette seconde dépend du repère où l'on se place mais on arrive là à un niveau de précision très élevé et les solutions pour utiliser ces échelles de temps sont complexes.

L'utilisation du Temps atomique international, très stable, va entraîner un décalage avec la rotation de la Terre et il faudra recaler cette échelle de temps régulièrement pour que midi reste à midi... C'est pour cela que l'on annonce régulièrement qu'une seconde va être ajoutée de temps en temps le 31 décembre ou le 31 juillet, selon les variations de la rotation de la Terre, pour que l'échelle de temps atomique utilisée ne s'écarte pas de plus d'une seconde du temps astronomique qu'est le Temps universel. Cette échelle de temps atomique modifiée par l'ajout régulier d'une seconde s'appelle le Temps universel coordonné. L'échelle de temps stable et uniforme employée pour les calculs astronomiques est maintenant le Temps terrestre, échelle de temps dont la réalisation pratique est liée au Temps atomique international, et qui prolonge le Temps des éphémérides.


La précession et la nutation

Le ralentissement de la rotation terrestre nous a montré le caractère irrégulier de cette rotation. De plus, l'axe de rotation ne reste pas fixe au cours du temps : les perturbations gravitationnelles de la Lune, du Soleil et des planètes entraînent différents mouvements de cet axe. D'abord un mouvement oscillant "périodique" rapide de petite amplitude autour d'une position moyenne, c'est la nutation. Ensuite, un mouvement lent, "séculaire" : tout en restant incliné à peu près de 23° 26' sur l'écliptique (le plan orbital de la Terre), l'axe va effectuer une rotation complète en 26 000 ans. C'est la précession : dans 13 000 ans, l'étoile polaire aura changée. C'est l'étoile Véga vers laquelle pointera l'axe de rotation de la Terre et 13 000 ans plus tard il sera à nouveau dirigé vers notre étoile polaire. La précession entraîne le déplacement rétrograde du point γ (équinoxe) le long de l'équateur céleste : il fera un tour en 26 000 ans. Les constellations vont donc sembler changer de place le long du zodiaque. Pour conserver les saisons à leur place chaque année nous devons donc considérer un équinoxe mobile.

precession.png
Le principe de la précession dûe au changement de direction de l'axe de rotation de la Terre
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou

L'axe de rotation de la Terre subit de petites variations périodiques de sa direction : c'est la nutation.


Les implications de la précession

Ce mouvement de précession implique ainsi que l'équinoxe ou point vernal, va effectuer une rotation sur notre sphère céleste en 26 000 ans, c'est-à-dire que l'origine des ascensions droites que nous avons choisie sur notre sphère céleste est mobile ! Il ne sera guère pratique ainsi de mesurer les mouvements des étoiles sur notre sphère céleste... Le problème est résolu par le choix d'un équinoxe à une date donnée. Ainsi, aujourd'hui, le point vernal origine est celui du début de l'année 2000 : tous les catalogues d'étoiles utilisent cette référence et l'utiliseront encore pendant des années. Il est à noter que les observations sur le ciel peuvent, dans certains cas, se faire par rapport au point vernal du jour de l'observation et qu'une correction sera faite pour se ramener à un repère commun, celui de 2000.

Les positions dans un repère de la date sont dites coordonnées "vraies de la date" et celle dans un repère 2000 sont dites "moyennes J2000". Dans le premier cas, on utilise un axe affecté de la nutation et de la précession et dans le deuxième cas, on élimine la nutation (coordonnées moyennes) en prenant l'axe "moyen" du début de l'année 2000.

 La précession va aussi compliquer la définition de l'année par rapport à "un tour" effectué par la Terre autour du Soleil.


Définition de l'année

L'année semble être facile à définir : c'est la durée nécessaire à la Terre pour faire un tour complet autour du Soleil. En fait ce n'est pas si simple. L'année intervient dans notre calendrier et le fait que la Terre ait accompli un tour complet (360°) n'est pas un critère fondamental.

annees1.png
Les différentes façons de mesurer une année. L'année sidérale qui mesure la durée mise par la Terre pour faire 360° autour du Soleil, n'est pas l'année la plus couramment utilisée. C'est l'année tropique qui garantit le retour des saisons à la même date qui est la plus utilisée.
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou
annees2.png
Les différentes façons de mesurer une année. L'année sidérale qui mesure la durée mise par la Terre pour faire 360° autour du Soleil, n'est pas l'année la plus couramment utilisée. C'est l'année tropique qui garantit le retour des saisons à la même date qui est la plus utilisée.
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou
annees3.png
Les différentes façons de mesurer une année. L'année sidérale qui mesure la durée mise par la Terre pour faire 360° autour du Soleil, n'est pas l'année la plus couramment utilisée. C'est l'année tropique qui garantit le retour des saisons à la même date qui est la plus utilisée.
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou
annees4.png
Les différentes façons de mesurer une année. L'année sidérale qui mesure la durée mise par la Terre pour faire 360° autour du Soleil, n'est pas l'année la plus couramment utilisée. C'est l'année tropique qui garantit le retour des saisons à la même date qui est la plus utilisée.
Crédit : ASM/Jean-Eudes Arlot et Gilles Bessou

On voit que l'on a le choix pour définir une année. Ce choix sera dicté par des considérations sociales, culturelles et religieuses. Notre calendrier (grégorien) a adopté l'année tropique parce qu'elle fait revenir les saisons à la même date chaque année (calendrier solaire). Le calendrier chinois utilise l'année sidérale parce qu'il se cale sur le mouvement des astres dans le zodiaque (par rapport aux étoiles fixes). L'année draconitique ne sert que pour déterminer la périodicité des éclipses de Soleil. Les calendriers lunaires (comme le calendrier musulman) privilégient une bonne approximation des mois sur les lunaisons. Ils sont indépendants du mouvement de la Terre autour du Soleil.