\frac{1}{r} = \frac{1+ e \cos(1 + \epsilon)\theta}{q}

\frac{d}{d\theta} \Big{(} \frac{1}{r}\Big{)} = \frac{- e (1+\epsilon) \sin (1+\epsilon)\theta}{q}

\frac{d^2}{d\theta^2} \Big{(} \frac{1}{r}\Big{)} = \frac{- e (1+\epsilon)^2 \cos (1+\epsilon)\theta}{q} \simeq \frac{-e (1 + 2 \epsilon) \cos (1+\epsilon) \theta}{q}, car \epsilon <<1.

Donc \frac{d^2}{d\theta^2} \Big{(} \frac{1}{r}\Big{)} + \frac{1}{r} = \frac{1}{q} - \frac{2 \epsilon e \cos (1+\epsilon)\theta}{q}.

K_1 + \frac{K_2}{r^2} = K_1 + \frac{K_2}{q^2} (1 + e \cos (1+\epsilon) \theta)^2 \simeq K_1 + \frac{K_2}{q^2} +  \frac{2K_2}{q^2} e \cos (1+\epsilon)\theta, car e<<1.

Donc K_1 + \frac{K_2}{r^2}  \simeq K_1 + \frac{2K_2}{q^2} e \cos (1+\epsilon)\theta, car \frac{K_2}{r^2} \simeq \frac{K_2}{q^2} <<K_1.

Donc par identification K_1 = \frac{1}{q} et \epsilon = \frac{-K_2}{q}.

Si \epsilon \longrightarrow 0, \displaystyle r=\frac{a(1-e^2)}{1 + e \cos \theta} (solution du problème keplerien) donc q = a (1 - e^2).

\epsilon = \frac{-K_2}{q} = - \frac{3 \alpha R^2 K_1}{a(1- e^2)}= - 3 \alpha \frac{R^2}{a^2 (1 - e^2)^2} donc \epsilon \simeq - 3 \alpha \frac{R^2}{a^2}.