Le bruit de photons


Observer

bruitphotons.png
Simulation de la détection d'une raie, en fonction du nombre de photoélectrons dN détectés par intervalle spectral, en supposant la détection limitée par le seul bruit de photons. L'échelle spectrale est donnée en vitesse.
Crédit : ASM

Bruit de photons et photodétection

Une bonne détection, par exemple l'identification d'une raie spectrale, nécessite l'enregistrement d'un nombre suffisant de photoélectrons, afin que la statistique d'arrivée des photons, de type poissonnien, n'empêche pas la détection.

grenaille20.png
Distribution en fonction du temps de l'arrivée de photons, des photoélectrons créés et du photocourant résultant. Les photons (points bleus) n'arrivent pas à intervalles de temps réguliers. Seuls un certain nombre d'entre eux donnent naissance à des photoélectrons (points rouges). Le photocourant total (bleu) résulte de la somme des contributions individuelles (couleur variable).
Crédit : ASM
grenaille200.png
Distribution en fonction du temps de l'arrivée de photons, des photoélectrons créés et du photocourant résultant. Les photons (points bleus) n'arrivent pas à intervalles de temps réguliers. Seuls un certain nombre d'entre eux donnent naissance à des photoélectrons (points rouges). Le photocourant total (bleu) résulte de la somme des contributions individuelles (couleur variable).
Crédit : ASM

Photons et photoélectrons

Le bruit de photons est en fait un bruit... de photoélectrons. L'arrivée dispersée des photons, conjuguée à la conversion aléatoire d'un photon en photoélectron, construisent la statistique de création de photoélectrons, qui dépend bien sûr du nombre de photons.


Apprendre

prerequisPrérequis

Statistique de Poisson : le bruit de photons obéit à la statistique de Poisson.

objectifsObjectifs

Evaluer le bruit et le rapport signal à bruit du bruit de photons.

Statistique de Poisson

La statistique d'arrivée des photons est poissonnienne, vu que les photons sont par définition des quanta d'énergie. Lorsque l'on attend N photons par intervalle de temps, la valeur moyenne observée est ... N et sa fluctuation autour de cette valeur moyenne vaut \sqrt{N}.

definitionDéfinition

Le bruit de photons, sur une mesure de N photons, est \sqrt{N}.

Il s'ensuit un rapport signal à bruit déterminé par le flux de photons égal à :

\displaystyle{\mathrm{S}\over\mathrm{B}} = {N\over \sqrt{N}} = \sqrt{N}

Ce rapport signal à bruit croît avec la racine carrée du nombre de photons collectés.

Photoélectrons

Les photons que l'on observe sont le plus souvent traduits par le détecteurs en photoélectrons, qui suivent la même statistique que les photons, à un facteur de rendement près inférieur à l'unité.

Avec \eta le rendement, le nombre de photoélectrons détectés vaut en fonction du nombre de photons incidents sur le détecteur :

N _{\mathrm{e}} \ = \ \eta \ N

Le bruit de photoélectrons et le rapport signal à bruit résultant valent en pratique \sqrt{N _{\mathrm{e}}}.


S'exercer

qcmQCM

1)  Le bruit de photons augmente avec le nombre de photons.



2)  Le rapport signal à bruit de photons augmente avec le nombre de photons.



3)  On note \eta le rendement du détecteur. Le rapport signal à bruit varie comme \eta^X avec X=:




4)  Une pose de 10 minutes conduit à un rapport signal à bruit, dominé par le bruit de photons, égal à 100. Quelle durée d'observation est nécessaire pour atteindre un rapport signal à bruit de 200 ?



exerciceLe projet COROT

Difficulté :    Temps : 20 min

Question 1)

En supposant que le rendement de la chaîne de détection vaut l'unité, combien de photons doivent être enregistrés pour que le bruit de photons permette une détection à 1 ppm

Question 2)

Le rendement de la chaîne de détection est de 25% seulement. Par quel facteur doit on corriger le nombre de photons à collecter.

Question 3)

Le nombre de photons requis est collecté en 5 jours. En déduire le nombre de photons accumulés en une pose élémentaire de 1 minute, et la performance atteinte sur une pose élémentaire.


S'évaluer

exerciceAu photon près

Difficulté :    Temps : 20 min

La figure ci-jointe représente la courbe de lumière de l'étoile HD 49933, l'une des cibles principales du satellite CoRoT. Le signal stellaire est composé de multiples signaux (activité, oscillations...) et bien sûr du bruit de photons. On admet que celui-ci domine à haute fréquence.

st49933.png
Courbe de lumière de l'étoile HD 49933. Nombre de photo-électrons collectés par seconde en fonction du temps.
Crédit : ASM/CNES
Question 1)

Estimer l'amplitude totale du bruit du signal stellaire.

[1 points]

Question 2)

Estimer l'écart-type du bruit

[1 points]

Question 3)

Montrer que le bruit mesuré est du même ordre de grandeur que le bruit de photons.

[1 points]


Réponses aux QCM

pages_bruit-photons/bruit-photons-sexercer.html

QCM


Réponses aux exercices

pages_analyser/bruit-photons-sexercer.html

Exercice 'Le projet COROT'


pages_analyser/bruit-photons-sevaluer.html

Exercice 'Au photon près'