Les atmosphères planétaires


Introduction

L'atmosphère des planètes telluriques est le fluide gazeux qui entoure leur surface. Ce gaz est maintenu par l'attraction gravitationnelle et est entraîné avec la planète. On caractérise ces atmosphères par plusieurs aspects tels que leur température, leur composition, la présence de nuages et leur météorologie.

L'étude de ces différents aspects est bien évidemment couplée et permet à la fois de mieux comprendre ces atmosphères et leur interaction avec la surface (et les océans dans le cas de la Terre), ainsi que le type de climat associé et son évolution dans le temps.

De plus, l'étude des atmosphères planétaires permet de contraindre la formation des planètes et leur histoire. Finalement, la comparaison de l'histoire des atmosphères (i.e. la planétologie comparée) permet de comprendre les paramètres physico-chimiques qui sont à l'origine de leur évolution distincte.


Température

Température d'équilibre

Le Soleil est la source d'énergie principale reçue par les planètes. La température d'équilibre à la surface des planètes dépend de leur distance au Soleil. Plus on est près du Soleil plus il fait chaud (Mercure) et plus on est loin plus il fait froid (Mars). Le mécanisme physique qui permet ce chauffage est l'absorption par la surface du rayonnement solaire émis dans le domaine Ultra-Violet (UV) et visible.

En fonction des propriétés de la surface (composition, relief, océans, calotte polaire, ...) et de la latitude, le sol absorbera plus ou moins efficacement ce rayonnement, tandis que l'énergie solaire non-absorbée sera réfléchie par la surface vers l'espace. Le coefficient de réflexion, caractérisant la part d'énergie réfléchie, est appelé albédo. Il dépend aussi de la composition chimique de l'atmosphère et de la couverture nuageuse.

La température d'équilibre d'une planète ne dépend que de trois paramètres basiques : la distance au Soleil, l'albédo, et la période de rotation.
Crédit : ASM/Alain Doressoundiram et Gilles Bessou

Effet de serre

La surface de la planète absorbe l'énergie solaire dans le domaine UV-visible, puis elle se refroidit en émettant un rayonnement Infrarouge (IR). Ce rayonnement IR se dirige vers l'espace en traversant l'atmosphère de la planète, avec laquelle elle peut interagir. Les gaz à effet de serre tels que l'eau (H2O), le dioxyde de carbone ou gaz carbonique (CO2), et le méthane (CH4) présents dans une atmosphère absorbent le rayonnement IR et le re-émettent dans toutes les directions, et notamment vers la surface, favorisant ainsi une accumulation de l'énergie thermique, et par conséquent une augmentation de la chaleur.

Ainsi, la température moyenne à la surface peut être supérieure à la température d'équilibre de la planète (cas de Vénus et de la Terre). L'effet de serre est notablement présent lorsque l'on a une atmosphère relativement transparente dans le domaine UV-visible et opaque dans l'infrarouge. On notera que la présence de nuages peut aussi augmenter l'effet de serre (par exemple les nuages d'acide sulfurique sur Vénus). L'effet de serre augmente la température à la surface de Vénus, la Terre et Mars, respectivement de 500, 35 et 5°C.

effet-de-serres.gif
L'effet de serre a pour conséquence de réchauffer la planète.
Crédit : ASM/Alain Doressoundiram et Gilles Bessou

application.png


En savoir plus : Variations diurnes

ensavoirplusEn savoir plus

L'inertie thermique du sol, la période de rotation et l'atmosphère sont les paramètres principaux qui contrôlent le contraste de température entre le jour et la nuit d'une planète. Lorsqu'une planète a une période de rotation lente (comme Mercure et la Lune), la température du jour est beaucoup plus élevée que celle de la nuit, tandis qu'une rotation rapide permettrait une plus grande homogénéité de température entre le jour et la nuit. L'inertie thermique du sol joue un rôle équivalent à la période de rotation (comme pour Mars). En effet, plus elle est faible (c'est-à-dire que la température varie rapidement), plus il y a de contraste jour-nuit. Inversement plus l'inertie thermique est forte, moins il y a de contraste jour-nuit. En règle générale, pour les planètes sans atmosphère, la variation de température diurne est un compromis entre la période de rotation et l'inertie thermique : elle varie de 150, 300 et 600°C pour respectivement Mars, la Lune et Mercure. La basse atmosphère peut aussi intervenir dans le cas où les échanges thermiques sont importants, c'est le cas sur Vénus et la Terre (variation diurne d'environ 10°C). Dans ce cas, le pouvoir radiatif élevé et la convection vont permettre d'homogénéiser les basses couches de l'atmosphère.

Tableau des températures jour/nuit des planètes telluriques
PlanèteTjour (°C)Tnuit (°C)
Mercure430-170
Vénus460450
Terre155
Lune120-170
Mars-23-93

Diversité des atmosphères

Composition et vent

La composition actuelle des atmosphères des planètes telluriques est très diverse. Mercure et la Lune n'ont presque pas d'atmosphère (pression < 10-15 bars). Vénus et Mars ont une composition atmosphérique proche, avec principalement du CO2 et quelques pourcents d'azote (N2). Cependant, la pression au sol de Vénus est environ 100 fois supérieure à celle de la Terre, et celle de Mars environ 100 fois inférieure. L'atmosphère de la Terre est, quand à elle, composée principalement d'un mélange d'azote (N2 ) et d'oxygène (O2) que l'on appelle l'air.

Sur Vénus, l'activité volcanique importante rejette une grande quantité de composés soufrés dans l'atmosphère, donnant naissance à des nuages d'acide sulfurique (H2SO4) qui nous empêchent de voir la surface. Une faible quantité de vapeur d'eau est encore présente dans l'atmosphère. Les vents près de la surface y sont quasiment nuls, mais augmentent considérablement avec l'altitude, avec des vitesses pouvant atteindre 300 km/h.

Sur la Terre, la vapeur d'eau est présente en quantité variable ( < 4%) en fonction des régions sèches ou humides qui dépendent fortement du climat. En s'élevant dans l'atmosphère, la vapeur d'eau se refroidit et se condense pour former des nuages (composés de goutelettes d'eau ou de cristaux de glace). La circulation des masses atmosphériques induit des vents de quelques km/h, mais pouvant atteindre des centaines de km/h lors de fortes tempêtes.

Sur Mars, on trouve aussi un peu d'oxygène, de monoxyde de carbone (CO) et des traces de vapeur d'eau dans l'atmosphère, mais les faibles pressions atmosphériques empêchent d'obtenir de l'eau liquide en surface. Néanmoins, de la glace d'eau et de dioxyde de carbone se forment en hiver sur les calottes polaires à cause des faibles températures. Pendant l'été martien, de fortes tempêtes peuvent soulever les poussières rendant la surface invisible. Des vents de quelques centaines de km/h sont fréquents en altitude.

PlanèteComposition atmosphérique Pression au sol (bars)Vent, climatNuages
MercureAtomes de O, Na, He, K, H, Ca10-15 Aucun, trop peu d'atmosphèreAucun
Vénus96.5% CO2, 3.5% N2, 0.015% SO2, <0.01% H2O, CO 90Vent faible à la surface, pas de tempête violente. Fort vents en altitude Nuages d'acide sulfurique : H2SO4
Terre78% N2, 21% O2, 0.9 % Ar, <4% H2O, 0.034% CO2 1Vents, cyclonesNuage d'eau, pollution
LuneAtomes de He, Ar, Na, K10-15 Aucun, trop peu d'atmosphèreAucun
Mars95.3% CO2, 2.7% N2, 1.6% Ar, 0.13% O2, 0.07% CO, <0.03% H2O0.006Vents, tempêtes de poussièresH2O et CO2, poussières

Saisons

Les saisons existent lorsqu'il y a une variation de l'ensoleillement durant l'année, qui est due à l'obliquité de l'axe de rotation de la planète sur le plan de l'écliptique (voir le tableau). C'est le cas pour la Terre et Mars pour lesquelles cet angle atteint environ 23°-25°. Par contre, sur Vénus, il n'y a pratiquement pas de saisons, puisque son obliquité n'est que de 3°. Pour en savoir plus sur les saisons sur la Terre consultez le cours sur les saisons.


Origine des atmosphères

Pendant la phase initiale de formation des planètes telluriques (il y a environ 4,56 milliards d'années), les planètes ont peut-être acquis une atmosphère primaire composée principalement d'hydrogène (H2) et d'hélium (He) à 99%, comme dans le Soleil ou Jupiter. Cependant cette hypothèse est très incertaine, et si c'était le cas, l'atmosphère primitive s'est probablement échappée très rapidement. Soit à cause de la faible gravité de ces planètes, soit soufflée par le vent solaire et par l'intense rayonnement UV du Soleil jeune, en même temps que la nébuleuse primitive, environ 10 millions d'années après la formation du Soleil.

Une atmosphère secondaire s'est formée ensuite par le dégazage des gaz piégés dans les roches - due à l'activité volcanique - ainsi que par des impacts de planétésimaux (astéroïdes, comètes) contenant des gaz volatils tels que H2O et CO2. Ces atmosphères secondaires étaient probablement semblables et composées principalement de H2O, CO2, N2, SO2 et à un degré moindre des gaz rares (Ar, Ne, He, Xe, Kr). La très faible abondance relative des gaz rares par rapport aux abondances solaires (10-4-10-12) est une preuve que ces atmosphères sont secondaires, puisque les gaz rares ne peuvent s'échapper que par des processus classiques. Les variations de composition initiale des roches formant ces planètes ainsi que leur faculté à absorber et dégazer les différents volatiles ont pu conduire à des atmosphères secondaires quelque peu différentes.

atmosphere-origine.gif
Origine de la formation des atmosphères primaires et secondaires.
Crédit : ASM/Raphael Moreno et Gilles Bessou

Evolution des atmosphères I

Introduction

Pendant la formation des atmosphères secondaires (environ 10-100 millions d'années après la formation de la planète), leur composition et leur température ont été modifiées par de nombreux facteurs tels que : la chimie, l'activité biologique (Terre), l'échappement atmosphérique, l'échange entre atmosphère/surface/océan (e.g. cycle du carbone) et l'effet de serre. Chacun de ces facteurs est complexe et nous ne détaillerons dans cette partie que l'échappement atmosphérique d'origine thermique et le cycle du carbone.

Echappement atmosphérique

C'est la gravité des planètes qui retient leur atmosphère. Si un corps ou une molécule acquiert une vitesse supérieure à une certaine vitesse appelée vitesse de libération il quitte définitivement la planète. Chaque planète a une vitesse de libération (Vlib) différente qui dépend de sa gravité (g) et de son rayon (R) : V_lib=sqrt(2 g R). Les vitesses de libération pour Vénus, la Terre et Mars sont respectivement de 10, 11 et 5 km/s (ou encore 36 000, 39 600 ou 18 000 km/h resp.).

A cause de l'agitation thermique, une molécule de masse molaire m, dans une atmosphère de température T, a une vitesse thermique (Vt) proportionnelle à sqrt(T/m) . Si la vitesse thermique est supérieure à la vitesse de libération il y a échappement de l'atmosphère. En pratique, ce sont principalement les atomes légers présents dans la très haute atmosphère peu dense (exosphère, P~10-11 bar) qui peuvent atteindre des vitesses thermiques suffisantes pour s'échapper sans qu'il y ait de collisions avec d'autres atomes. Sur la Terre et Mars, l'hydrogène (H) présent dans l'exosphère s'échappe ainsi quotidiennement. Sur Vénus, il existe d'autres processus d'échappement non thermiques complexes qui peuvent être beaucoup plus efficaces, comme par exemple le criblage de l'atmosphère par des particules énergétiques. En effet, contrairement à la Terre, Vénus n'a pas de bouclier magnétique (plus connu sous le nom de magnétosphère) pour la protéger.

En bref...

Ce qu'il faut retenir, c'est que la vitesse de libération d'une planète est le paramètre clé qui lui permet de conserver ou non son atmosphère. De plus, en règle générale, que le processus d'échappement soit d'origine thermique ou non-thermique, plus la molécule est légère et plus la température est élevée, plus elle s'échappe facilement de la planète. Par conséquent, les processus d'échappement jouent un rôle important dans la modification de la composition atmosphérique.

Tableau de la gravité et de la vitesse de libération des planètes telluriques
PlanèteR (km)g (m/s2)Vlib (km/s)
Mercure24393,7004,2
Vénus60518,8310,4
Terre63789,8011,2
Mars31893,7205,0

Evolution des atmosphères II

Cycle du Carbone

Le gaz carbonique (CO2) présent dans l'atmosphère se dissout dans l'eau de pluie et se dépose sur le sol sous forme d'acide carbonique (H2CO3). Les minéraux contenant des silicates (tel que la wollastonite : CaSiO3) réagissent avec le CO2 dissous pour former des roches carbonatées (telle que la calcite : CaCO3) et du quartz (SiO2). Par ailleurs, le ruissellement des pluies peut aussi éroder les roches continentales carbonatées et transporter l'ion bicarbonate (HCO3-) dans les océans pour se combiner avec du calcium (Ca) et former à nouveau de la calcite. Aujourd'hui ce sont principalement certains organismes marins qui fabriquent ainsi leur squelette minéralisé et leur coquille, cependant des réactions chimiques abiotiques plus lentes le permettent aussi. Avec le temps, le calcaire se dépose dans les fonds marins et s'y accumule sous forme de sédiments. Le déplacement des plaques tectoniques enfouit ces roches carbonatées par le mécanisme de subduction. La pression et la température intense de ce mécanisme permettent de combiner le calcaire et le quartz en minéraux silicatés (tels que la wollastonique). Cette transformation produit à nouveau du gaz carbonique qui se mélange au magma et qui est réinjecté dans l'atmosphère par l'activité volcanique. Après ce cycle du carbone, on retrouve le gaz carbonique présent initialement dans l'atmosphère.

Sur Terre, le temps de résidence du CO2 atmosphérique n'est que de quelques années. Dans l'océan il est de quelques siècles (en surface) à quelques centaines de milliers d'années (fonds marins), et dans le sous-sol (lithosphère) de quelques 100 millions d'années, à cause de la tectonique qui est un phénomène géologique lent. S'il n'y avait pas de recyclage, le CO2 atmosphérique disparaîtrait en 400 000 ans. En revanche, il faudrait seulement 20 millions d'années pour injecter 1 bar de CO2 dans l'atmosphère par volcanisme. Le cycle du carbone est un mécanisme qui permet de moduler/réguler la composition atmosphérique en gaz carbonique et la température d'une atmosphère (Effet de serre).

Cycle du carbone
cycleco2.gif
Le gaz carbonique suit un cycle qui conduit à l'accumulation du carbone tantôt dans l'atmosphère, tantôt dans le sous-sol.
Crédit : ASM/Alain Doressoundiram et Gilles Bessou

Histoire des atmosphères

Introduction

Il y a 4,5 milliards d'années le Soleil jeune était moins lumineux de 30% environ. Depuis cette époque, l'albédo des planètes a probablement varié à cause d'une couverture nuageuse différente, de la présence de calotte polaire ou de l'activité volcanique éjectant une quantité importante de poussières dans l'atmosphère. Les variations de l'albédo, du flux solaire et de l'effet de serre ont certainement modifié les températures de surface. D'autres facteurs comme la variation temporelle de l'inclinaison et de l'excentricité de la planète (sur Terre de 40 000 à 100 000 ans – cycle de Milankovitch) modifie l'illumination des planètes par le Soleil, et ont conduit à des changements climatiques importants (âges glaciaires).

La proximité entre Vénus, la Terre et Mars nous font penser que leur composition initiale était semblable. Actuellement, Vénus et Mars ont une composition proche (CO2, N2), mais ont une énorme différence de pression et de température. La Terre, elle, a une composition différente (N2, O2).

Quelle a pu être l'évolution de la composition de leur atmosphère, ainsi que de leur surface (océans, calotte polaire) et de leur température, pouvant expliquer de telles différences ? Pourquoi l'eau est-elle abondante sur Terre, alors que Vénus est pratiquement sèche et Mars aride ? Les paragraphes suivants permettront de comprendre la succession des évènements qui semblent expliquer les différentes atmosphères actuelles.

Mercure

Mercure n’a probablement pas eu une atmosphère primitive comme les autres planètes telluriques à cause de sa proximité avec le Soleil. De plus, sa faible masse et les températures élevées autorisent une vitesse de libération faible. Ainsi son atmosphère secondaire formée par le dégazage des roches s’est rapidement échappée au cours du temps, aidée aussi par l’intense flux du rayonnement UV solaire.

Il faut noter que la cratérisation intense de la surface nous indique que l'atmosphère a disparu avant la fin du bombardement tardif de planétésimaux (environs 700 millions d'années après sa formation). Par conséquent, il est difficile d’établir une chronologie plus détaillée des processus physiques qui ont permis l’échappement de son atmosphère, puisque les traces potentielles d'érosion ont dû être effacées avec le bombardement tardif.

atmevol-mercure.gif
Evolution de l'atmosphère de Mercure.
Crédit : ASM/Raphael Moreno et Gilles Bessou

Vénus

Vénus a probablement possédé autant d'eau que sur la Terre. Avec une température probablement inférieure à 100°C (le Soleil jeune était moins intense), l'eau se trouvait sous forme liquide formant des océans. Cependant, Vénus étant plus proche du Soleil, sa température était nécessairement plus chaude que celle de la Terre, permettant progressivement une évaporation plus importante des océans. Une grande quantité de vapeur d'eau augmente l'efficacité de l'effet de serre et par conséquent la température, qui à son tour fait croître à nouveau l'évaporation. Lorsque la température dépasse celle du point critique de l'eau (374°C), l'eau se retrouve à l'état gazeux sous forme de vapeur d'eau et il n'y a plus de pluie qui permet de soustraire le gaz carbonique. Le cycle du carbone est stoppé, ce qui entraîne une augmentation irrémédiable de la quantité de CO2 par le volcanisme et par conséquent de la température de l'atmosphère. On désigne cette situation par "emballement de l'effet de serre".

D'autre part, les fortes températures de la basse atmosphère permettent à la vapeur d'eau de s'élever par convection dans la haute atmosphère. Dans cette région, des réactions photochimiques avec le rayonnement UV solaire permettent de photodissocier (ou briser) la molécule d'eau (H2O) pour séparer l'hydrogène (H) et l'oxygène (O). L'hydrogène étant léger s'échappe de l'atmosphère. L'oxygène peut aussi être éliminé soit par des processus d'échappement non-thermiques, soit par l'oxydation des sols, qui sont perpétuellement régénérés par l'activité volcanique. Au final, on obtient une atmosphère sèche, ce qui explique bien l'absence de vapeur d'eau sur Vénus.

La rupture du cycle du carbone, augmente le gaz carbonique dans l'atmosphère. Une partie du gaz carbonique est tout de même soustraite par des transformations chimiques (sans eau) avec les roches silicatées de surface, produisant des roches carbonatées. L'équilibre est atteint pour des pressions de gaz carbonique et des températures observées de 90 bar et 430°C.

atmevol-venus.gif
Evolution de l'atmosphère de Vénus.
Crédit : ASM/Raphael Moreno et Gilles Bessou

Terre

Après la formation de la Terre, le faible flux solaire aurait dû geler l'eau, mais l'absence de glaciers il y a 4 milliards d'années semble indiquer que la température était bien plus clémente et qu'il y avait des océans. A cette époque, suite au dégazage, le gaz carbonique était beaucoup plus abondant qu'aujourd'hui permettant ainsi un effet de serre bien plus important. Cet effet a permis de maintenir une température moyenne proche de celle d'aujourd'hui (~ 15°C). Au fur et à mesure, l'intensité du Soleil a augmenté et le niveau de gaz carbonique a diminué à cause du cycle du carbone qui a transformé la plupart du gaz carbonique en roches carbonatées. A l'heure actuelle, on trouve uniquement des traces de gaz carbonique dans l'air. Par ailleurs, le développement intense de la vie sur Terre (il y a environ 2 milliards d'années) a favorisé l'augmentation de l'oxygène dans l'atmosphère grâce à la photosynthèse des plantes. Le cycle du carbone et le développement de la vie explique que notre atmosphère actuelle est composée principalement d'azote et d'oxygène.

Sur Terre, il y a un équilibre stable entre l'effet de serre et le cycle du carbone qui permet de réguler les températures moyennes entre 5 et 20°C évitant ainsi un effet de serre divergent comme sur Vénus. Lorsque la température augmente, l'humidité augmente à cause des pluies plus fréquentes, ce qui altère plus les sols et diminue la quantité de gaz carbonique. Par conséquent, l'effet de serre diminue et la température baisse. Inversement, si la température diminue fortement jusqu'à la congélation de l'eau ( 0°C), il s'arrête de pleuvoir et le cycle du carbone s'interrompt. Le volcanisme, lui, persiste et provoque l'augmentation de la quantité de gaz carbonique. Cette fois-ci, l'effet de serre augmente et la température avec, permettant la fonte des glaces et des calottes polaires, puis l'évaporation des océans jusqu'à réanimer le cycle de l'eau (évaporation et pluies) et par conséquent celui du carbone. Un autre paramètre important pouvant altérer cet équilibre est l'activité de l'homme (aérosols, agriculture, combustion, etc), responsable de l'augmentation artificielle du niveau de gaz carbonique et d'autres gaz à effet de serre (CH4, polluants, etc). L'activité humaine doit absolument être maîtrisée pour éviter d'atteindre la zone dangereuse du régime d'emballement de l'effet de serre comme sur Vénus, qui serait un point de non-retour.

Mars

Les traces de lits de rivières à la surface de Mars sur des terrains géologiques anciens (Tharsis) prouvent que l'eau a coulé à la surface de Mars pendant les premiers 500 millions d'années. Un océan d'environ 150 mètres de profondeur a pu exister. La température était donc supérieure à 0°C et la pression supérieure à quelques bars, ce qui implique une forte concentration de gaz à effet de serre (CO2, H2O) et surtout un climat chaud et humide. Dans ces conditions, le cycle du carbone a transformé la majeure partie du gaz carbonique en roches carbonatées, comme sur Terre.

Par la suite, le bombardement tardif de planétésimaux (environs 700 millions d'années après la formation) et la relative faible gravité de la planète a probablement éliminé une partie de l'atmosphère soufflée par des impacts. D'autre part, la datation des terrains géologiques a permis de constater que les rivières ont disparu au bout d'environ 1 à 2 milliards d'années, ce qui coïncide avec la baisse de l'activité volcanique. Mars est une petite planète qui s'est refroidie plus rapidement que la Terre et Vénus, arrêtant ainsi volcanisme et activité tectonique et empêchant la régénération du gaz carbonique atmosphérique. Il faut noter que la variation temporelle (de 100 000 ans à 1 million d'années) de l'inclinaison et de l'excentricité de la planète a accentué la formation de calottes polaires et le refroidissement à la surface.

L'arrêt du cycle du carbone, l'érosion de l'atmosphère et les changements climatiques ont contribué à des degrés différents à diminuer la quantité de gaz à effet de serre jusqu'aux pressions actuelles (7 mbar), refroidissant ainsi l'atmosphère jusqu'aux températures actuelles (-50°C). Une partie de l'eau s'est congelée sur les calottes polaires, et une autre a disparu en s'infiltrant dans les sous-sols sous forme de pergélisol. Une dernière partie s'est échappée de l'atmosphère à la suite de la photodissociation de l'eau (comme sur Vénus).


Exercices atmosphères

qcmQCM

1)  Les atmosphères de Mars et de Vénus sont constituées principalement de :






2)  Comment se sont formés les océans sur la Terre ?


3)  Après leur formation, qu'est-ce qui apporte du CO2 dans les atmosphères des planètes telluriques ?




4)  La pluie est le principal facteur d'élimination du CO2 dans l'atmosphère de la Terre. Sous quelle forme se dépose le CO2 ?


5)  L'effet de serre permet de réchauffer la température de surface de certaines planètes, pourquoi ?



exerciceA propos de l'eau sur Vénus

Question 1)

Pourquoi n'y a-t-il plus d'eau sur Vénus alors qu'il y en a sur la Terre ?

exerciceAugmenter l'effet de serre

Question 1)

Comment peut-on augmenter l'effet de serre ?

exerciceUne Terre à 100°C

Question 1)

Que se passerait-il si la température de la Terre augmentait de 100°C ?


Réponses aux QCM

pages_atmospheres-planetaires/bb-exercices-atmospheres.html

QCM