Coordonnées géographiques et géocentriques


Observer

Quelle référence pour les coordonnées angulaires ?

Les coordonnées polaires, c'est simple a priori. Sauf que faire les mesures à partir de la surface de la Terre, et non du centre, change le point de vue. La Terre n'étant pas ronde, la définition des coordonnées angulaires par rapport à la verticale locale ne coincide pas avec une définition centrale.

Coordonnées géographique et géocentrique
coord.png
Double définition possible des coordonnées angulaires à la surface d'un objet en forme d'ellipsoïde aplati (tel que la Terre). Les coordonnées géocentriques (bleu) sont définies par rapport au centre de l'objet ; les coordonnées géographiques (rouge) par rapport à la verticale locale.
Crédit : ASM

S'exercer

exerciceLa figure de la Terre

Difficulté : ☆☆   Temps : 30 min

Au milieu du XVIIIe siècle, les missions de La Condamine au Pérou et de Maupertuis au Laponie ont conduit à la mesure de la longueur d'un degré du méridien en Laponie (aux alentours de la latitude 80^\circ) ainsi qu'au Pérou (vers -5^\circ). Il s'agissait de lever une controverse concernant la "figure" de la Terre, c'est à dire sa forme : aplatie aux pôles, ou bien en forme de ballon de rugby ?

Question 1)

Expliquer pourquoi la longueur d'un degré le long du méridien diffère entre ces 2 régions. Faire un schéma.

Question 2)

La Terre étant aplatie aux pôles, le rayon de courbure local est-il plus important au pôle ou à l'équateur ? Quel degré de méridien correspond à la plus grande longueur ?

Question 3)

La longueur \ell d'un arc de méridien d'ouverture \alpha s'écrit en fonction du rayon de courbure \cal R :

\ell \ = \ { {\mathcal{R}}}\ \alpha

En représentation paramétrique, on repère un point de l'ellipse de révolution par

\left\{ \matrix{ x &=& R& & \cos \theta \cr y &=& R& (1-e) & \sin \theta \cr }\right.

avec e le paramètre marquant l'aplatissement. Le rayon de courbure s'écrit, au 1er ordre en e :

{ {\mathcal{R}}} \ = \ R\ {1-e\cos^2\theta \over 1 + 2 e\cos^2\theta - e}

[on peut retrouver ce résultat en appliquant la définition : { {\mathcal{R}}} = {\mathrm{d}} s / {\mathrm{d}} \varphi, avec {\mathrm{d}} s^2 = {\mathrm{d}}^2 x + {\mathrm{d}}^2 y et \tan\varphi = {\mathrm{d}} y / {\mathrm{d}} x].

Les mesures pour tourner de 1 degré donnant respectivement 57395 toises en Laponie, et 56735 toises au Pérou (57097 au sud de Paris), en déduire un ordre de grandeur de l'aplatissement de la Terre, exprimé comme la différence relative entre les rayons au pôle et à l'équateur.


Réponses aux exercices

pages_complements-ephemerides/coordonnee-geocentrique-sexercer.html

Exercice 'La figure de la Terre'