Dans cette section nous abordons l'aspect dynamique des éclipses de Lune. Nous reparlons du mouvement de la ligne des noeuds de l'orbite lunaire et de la saison des éclipses, nous définissons de nouveau des critères en latitude et en longitude pour avoir une éclipse au voisinage de la pleine Lune. Nous étudions, comme pour les éclipses de Soleil, le nombre d'éclipses à chaque saison d'éclipse et l'évolution des éclipses saison après saison. Nous reprenons la prédiction des éclipses de Lune et de Soleil sur la période de 22 ans (1998-2020).
Il y a éclipse de Lune lorsque la Lune passe dans le cône d'ombre ou dans le cône de pénombre de la Terre. Le Soleil, la Terre et la Lune sont alors presque alignés, et on est au voisinage de la pleine Lune (opposition). Si le plan de l'orbite de la Lune était le même que le plan de l'orbite de la Terre (écliptique), il y aurait une éclipse de Lune à chaque pleine Lune, or le plan de l'orbite de la Lune est incliné d'environ 5° 17' sur le plan de l'orbite terrestre à la pleine Lune. À chaque instant, l'intersection de ces deux plans est une droite appelée ligne des nœuds et les intersections de cette droite avec l'orbite de la Lune sont appelées nœuds de l'orbite lunaire.
Cette ligne des nœuds n'est pas fixe, elle est animée, dans le sens rétrograde (sens des aiguilles d'une montre), d'un mouvement de précession d'une période de 18,6 ans, soit un déplacement de 19,354 8° par an.
Pour qu'il y ait une éclipse il faut donc, dans le repère écliptique géocentrique, que la direction Soleil-Terre soit près de la ligne des nœuds lunaires au moment de la pleine Lune. Compte tenu du mouvement de précession des nœuds, le Soleil apparent passe par l'un des deux nœuds tous les 173,31 jours. Cette période porte le nom de saison d'éclipses. Il passe par le même nœud tous les 346,32 jours, cette période porte le nom d'année des éclipses.
La direction Terre-Soleil est la direction du Soleil apparent vu depuis la Terre, elle fait donc 360° pendant une révolution sidérale de la Terre. La ligne des nœuds de l'orbite lunaire se déplace en moyenne de 19,3413618°/an dans le sens rétrograde. On a donc deux mouvements en sens contraire. La période T qui ramène le Soleil apparent dans la direction d'un même nœud de l'orbite lunaire est solution de l'équation suivante :
T . 360°/an + T . 19,3413618°/an = 360°
ce qui donne T = 360/(360 + 19,3413618) an = 0,9490133 an.
L'année sidérale étant égale à : an = 365,2563632 jours, T = 346,63 jours.
La saison des éclipses correspond à l'intervalle de temps mis par le Soleil apparent pour passer d'un nœud de l'orbite lunaire à l'autre, elle est donc égale à T/2 ~ 173,31 jours.
La valeur de cette période T nous permet de calculer la vitesse moyenne du Soleil apparent (ou de la Terre) dans un repère tournant lié à la ligne des nœuds de l'orbite lunaire. Par rapport à cette ligne des nœuds le Soleil apparent fait un tour de 360° en 346,63 jours, sa vitesse moyenne par rapport à la ligne des nœuds est donc de 360°/346,63j = 1,038°/jour.
En réalité, le mouvement rétrograde de la ligne des nœuds présente des inégalités importantes. À certaines époques, sa vitesse est le double de la moyenne. À d'autres moments, sa vitesse est nulle, les nœuds sont alors stationnaires. Cela se produit aux voisinages du passage du Soleil dans la direction de la ligne des nœuds, donc au voisinage des éclipses de Soleil (et aussi de Lune). On peut expliquer ce phénomène de la manière suivante, lorsque le Soleil est sur la ligne des nœuds, il se trouve dans le plan de l'orbite de la Lune, la force perturbatrice du Soleil est alors comprise dans le plan de l'orbite de la Lune, donc la composante perpendiculaire à ce plan est nulle et ne "tire" pas sur le plan de l'orbite. Le fait que les nœuds soient quasi-stationnaires au moment des éclipses est très important, en effet les positions moyennes des nœuds sont alors presque égales aux positions vraies, donc dans l'étude des éclipses on peut utiliser le mouvement moyen des nœuds.
On démontre qu'une éclipse de Lune se produira si, au moment de la pleine Lune (instant où la différence des longitudes géocentriques de la Lune et du Soleil est égale à 180°, c'est-à-dire au moment de l'opposition), la valeur absolue de la différence b des latitudes géocentriques apparentes du centre de la Lune et du centre du cône d'ombre est inférieure à 1,41° (1° 25' 23"), elle se produira peut-être si elle est comprise entre 1,41° (1° 25' 23") et 1,59° (1°35' 40") et elle ne se produira pas si elle est supérieure à 1,59° (1° 35' 40").
Sur la figure ci-dessus, la distance minimale correspond à l'instant où pour le centre de la Terre, le centre de la Lune est le plus près possible du centre du cône d'ombre, cela correspond si l'éclipse a lieu, au maximum de l'éclipse. Durant une éclipse de Lune on a toujours un des deux scénarios suivants :
La géométrie de ce dessin montre également que plus l'opposition est proche du nœud, plus la distance minimale entre la Lune et le centre du cône d'ombre est petite et plus la grandeur (magnitude) de l'éclipse est grande. Ainsi, les éclipses par la pénombre correspondent à des oppositions situées loin des nœuds de l'orbite lunaire et les éclipses par l'ombre (partielles ou totales) correspondent à des oppositions proches des nœuds de l'orbite lunaire.
On peut détailler le critère en latitude en déterminant pour quelle valeur de b (0,89°) on a une éclipse par l'ombre avec certitude et pour quelle valeur de b (1,06°) on n'a pas d'éclipse par l'ombre avec certitude (mais une éclipse par la pénombre avec certitude); de même on peut déterminer pour quelle valeur de b (0,36°) on a une éclipse totale avec certitude et pour quelle valeur de b (0,53°) on n'a pas d'éclipse totale avec certitude, ces valeurs sont données dans le graphique ci-dessous.
On peut également calculer les valeurs moyennes de ces critères en latitude. Pour avoir une éclipse de Lune par la pénombre il faut que b soit inférieure à βm = 1,49°, pour avoir une éclipse de Lune par l'ombre il faut que b soit inférieure à βm = 0,96° et pour avoir une éclipse totale de Lune il faut que b soit inférieure à βm = 0,44°. Ces valeurs moyennes permettent de calculer également la proportion d'éclipses par la pénombre (36%), la proportion d'éclipses par l'ombre (64%) et la proportion d'éclipses totales (30%).
Les bornes d'existence des éclipses de Lune : 1,41° (1° 25' 23") et 1,59° (1°35' 40") sont très proches des limites des éclipses de Soleil : 1,41° (1° 24' 37") et 1,59° (1°34' 46"). Les écarts sont de l'ordre de la minute de degré. Les bornes des éclipses de Lune sont un peu plus grandes que les bornes des éclipses de Soleil en raison de la réfraction atmosphérique.
La démonstration est en tout point identique à la démonstration du critère en latitude des éclipses de Soleil, il suffit de remplacer la conjonction par l'opposition et le Soleil par les cônes d'ombre et de pénombre de la Terre.
Nous allons établir le critère en latitude dans le cas d'une éclipse au nœud ascendant de l'orbite lunaire, l'opposition ayant lieu avant le passage au nœud. La démonstration est identique pour un passage au nœud descendant ou avec une opposition située après le passage au nœud, la seule chose qui change dans ce dernier cas est la position du minimum de distance entre des deux corps.
Soit M0 et S0 : les positions de la Lune et du centre du cône d'ombre à l'instant de l'opposition (pleine Lune) avant le passage de la Lune au nœud ascendant de son orbite.
M et S : les positions de la Lune et du centre du cône d'ombre à un instant t postérieur à l'opposition.
γ : l' angle S0M0S. : la différence des latitudes entre la Lune et le centre du cône d'ombre à l'instant de l'opposition.
q : le rapport du mouvement en longitude de la Lune sur celui du centre du cône d'ombre (Soleil+180°).
Le calcul du critère en latitude consiste à calculer le minimum de la distance SM et de le comparer à la somme des demi-diamètres géocentriques apparents des cônes d'ombre (et de pénombre ) et du demi-diamètre de la Lune. SM se calcule simplement en utilisant le théorème de Pythagore :
On a :
soit
avec
(1)
On introduit un angle auxiliaire i', tel que :
est minimum lorsque est nulle
(2)
Ce qui correspond à : (3)
Cette distance correspond à une observation vue du centre de la Terre (coordonnées géocentriques).
Il y a éclipse par la pénombre lorsque SM est inférieur à la somme des demi-diamètres apparents du cône de pénombre et de la Lune.
soit : (4)
Il y a éclipse par l'ombre lorsque SM est inférieur à la somme des demi-diamètres apparents du cône d'ombre et de la Lune.
soit : (5)
Il y a éclipse totale par l'ombre lorsque SM est inférieur à la différence des demi-diamètres apparents du cône d'ombre et de la Lune.
soit : (6)
Il suffit alors de remplacer dans ces formules les paramètres par leurs valeurs extrêmes pour en déduire les critères en latitude.
Le tableau suivant donne les valeurs extrêmes des paramètres, l'étude des séries donnant l'orbite de la Lune, montre qu'au voisinage de la nouvelle Lune (et de la pleine Lune) la valeur de l'inclinaison est maximale, il convient donc de prendre i ~ 5° 17' dans ces formules.
maximum | Minimum | moyenne | |
---|---|---|---|
q | 16,2 | 10,9 | 13,5 |
1,0052 | 1,0043 | 1,00472 | |
Parallaxe Lune | 61' 27" | 53' 53" | 57' 2,70" |
Parallaxe Soleil | 8,96" | 8,65" | 8,80" |
1/2 diamètre Lune sL | 16' 45" | 14' 41" | 15' 32,58" |
1/2 diamètre Soleil sS | 16' 18" | 15' 46" | 15' 59,63" |
* | 46' 27" | 38' 15" | 41' 45,73" |
* | 1° 18' 30" | 1° 10' 20" | 1° 13' 45" |
* Dans le calcul de ces valeurs on a tenu compte de la réfraction atmosphérique et de la parallaxe de la Lune à 45° de latitude en multipliant σ par (1+1/128) et ρ par (1+1/73).
Ainsi la valeur inférieure βMin du second membre de (4) est obtenue avec σ et sL minimales, la valeur supérieure βMax est obtenue avec σ et sL maximales et l'on obtient βMin=1°25'23" et βMax=1°35'40". Ce sont les limites d'existence des éclipses de Lune.
De même la valeur inférieure βMin du second membre de (5) est obtenue avec ρ et sL minimales, la valeur supérieure βMax est obtenue avec ρ et sL maximales et l'on obtient βMin=0°53'9,63" et ΔMax=1°3'28,6". Ce sont les limites d'existence des éclipses de Lune par l'ombre.
Et enfin la valeur inférieure βMin du second membre de (6) est obtenue avec ρ minimal et sL maximal, la valeur supérieure βMax est obtenue avec ρ maximal et sL minimal et l'on obtient βMin=0°21'35,52" et βMax=0°31'54,52". Ce sont les limites d'existence des éclipses totales de Lune.
Le critère sur la latitude du centre de la Lune, peut se traduire en un critère sur la longitude de l'opposition Lune Soleil donc de la longitude du centre du cône d'ombre (Soleil +180°) par rapport au nœud de l'orbite lunaire. Ainsi il y aura éclipse si au moment de l'opposition en longitude, la différence de longitude entre le nœud de l'orbite lunaire et la longitude du centre du cône d'ombre est inférieure à 15,665°, il n'y aura pas d'éclipse si cette différence est supérieure à 17,375°, et il y aura peut-être éclipse si elle est comprise entre ces deux valeurs. Comme on le voit on a repris le même critère que dans le cas des éclipses de Soleil, en effet vu la faible différence des critères en latitude, on peut considérer que les critères en longitude sont identiques, en réalité les critères en longitude pour les éclipses de Lune sont un petit peu plus larges que les critères en longitude pour les éclipses de Soleil.
La figure suivante représente le critère en longitude vu dans le repère géocentrique écliptique.
En étudiant la figure ci-dessus, on peut se poser la question suivante. Supposons que nous ayons une conjonction en longitude (1) juste avant le point A, la conjonction suivante (2) va-t-elle être à l'intérieur ou à l'extérieur de l'arc BB' ? Pour répondre à cette question, on doit calculer de combien avance la longitude de la Terre (ou du soleil apparent) par rapport au nœud de l'orbite lunaire durant une révolution synodique de la Lune (une lunaison). On a vu que la Terre (ou le soleil apparent) passe par le même nœud de l'orbite lunaire tous les 346,62 jours, donc la vitesse de la Terre par rapport à la ligne des nœuds est de 360°/346,64jours = 1,0386°/jour, or la révolution synodique moyenne de la Lune est de 29,53 jours, donc entre deux conjonctions consécutives la longitude de la Terre varie de 1,0386 x 29,53 = 30,67°.
Or cette valeur est inférieure à la valeur de l'arc qui est égale à 31,33°. Donc à chaque passage de la Terre (ou du soleil apparent) par un nœud de l'orbite lunaire il y a obligatoirement une éclipse de Soleil au voisinage de la conjonction dont la longitude est la plus proche du nœud de l'orbite lunaire.
On peut donner une information supplémentaire, comme le critère en longitude est le même pour les éclipses de Lune, une demi-lunaison avant ou après la conjonction (nouvelle Lune) la Lune est en opposition (pleine Lune) et la Terre n'a parcouru que 15,335° en longitude par rapport au nœud, ces 15,335° correspondent à l'écart angulaire entre une conjonction et une opposition. Donc si une conjonction se trouve dans l'arc BB' l'opposition suivante ou l'opposition précédente se trouve obligatoirement aussi sur cet arc et il y a une éclipse de Lune, mais à l'autre nœud de l'orbite lunaire.
À chaque saison d'éclipse, il y obligatoirement deux éclipses, une éclipse de Soleil et une éclipse de Lune.
La variation de longitude de la Terre durant une lunaison étant de 30,67° et l'arc BB' ayant une longueur de 31,33°, il est également possible d'avoir deux conjonctions contenues dans l'arc BB'. Dans ce cas les conjonctions sont proches des extrémités de l'arc BB' et l'opposition comprise entre ces deux conjonctions est proche du nœud de l'orbite lunaire. De même on peut avoir deux oppositions dans l'arc BB'. Dans ce cas les oppositions sont proches des extrémités de l'arc BB' et la conjonction comprise entre ces deux oppositions se trouve proche du nœud de l'orbite lunaire. De plus comme nous l'avons déjà signalé, les éclipses proches des extrémités de l'arc BB' donc loin du nœud sont des éclipses faibles, donc des éclipses partielles de Soleil ou des éclipses de Lune par la pénombre et les éclipses proches du nœud sont des éclipses fortes, donc des éclipses centrales de Soleil ou des éclipses totales de Lune.
On peut donc avoir une série de trois éclipses, au voisinage du passage de la Terre (ou du soleil apparent) par un nœud de l'orbite lunaire. Dans ce cas on a soit une éclipse forte de Soleil (éclipse centrale) encadrée par deux éclipses faibles de Lune (éclipses par la pénombre) ou une éclipse forte de Lune (éclipse totale) encadrée par deux éclipses faibles de Soleil (éclipses partielles).
Une année civile du calendrier grégorien comporte 365 ou 366 jours. La lunaison moyenne est de 29,53 jours, une année lunaire de douze lunaisons a donc 354 jours, l'écart entre les deux années est de 11 ou 12 jours. Durant ces jours, la demi-lunaison étant supérieure à 14 jours, il ne peut pas y avoir à la fois une conjonction et une opposition. Donc une année civile ne peut jamais avoir à la fois 13 conjonctions (nouvelles Lunes) et 13 oppositions (pleines Lunes). Une seule de ces deux conjonctures est possible, dans ce cas la première conjonction ou opposition a lieu dans les 11 (ou 12) premiers jours de janvier et la dernière conjonction ou opposition a lieu dans les 11 (ou 12) derniers jours de décembre. On a donc, au maximum, soit une année civile à 13 oppositions, soit une année civile à 13 conjonctions. La saison des éclipses est égale à 173,31 jours, donc tous les 173 jours, aux conjonctions et oppositions les plus proches de ces dates il y a au moins deux éclipses (une de Soleil et une de Lune) et il y a au plus trois éclipses (deux de Lunes et une de Soleil ou deux de Soleil et une de Lune).
Une année civile peut contenir au maximum deux saisons d'éclipses entières, soit trois passages de la Terre par un des nœuds de l'orbite lunaire, le premier étant en début d'année, le second en milieu d'année et le dernier en fin d'année. À chacun de ces passages, on peut associer un couple ou un triplet d'éclipses. Mais l'on n'a jamais un triplet d'éclipses complet en début et en fin d'année, et dans le cas ou l'on a deux triplets complets à deux passages consécutifs le troisième passage ne comporte qu'une éclipse dans l'année en cours, car s'il présentait deux éclipses dans l'année en cours, il y aurait 13 oppositions et 13 conjonctions dans l'année, chose impossible. Donc dans une année civile, on a au maximum sept éclipses. Le tableau ci-dessous regroupe toutes les combinaisons possibles.
On remarque dans ce tableau que les triplets d'éclipses qui se suivent à six lunaisons d'intervalle ont la même composition. En effet, comme on l'a déjà signalé, dans chaque triplet, l'éclipse médiane se produit très près du nœud, or l'éclipse médiane du triplet suivant sera forcement une éclipse du même corps, la conjonction ou l'opposition n'ayant avancé que de 4° environ. De plus lorsque l'on a sept éclipses par an la première et la dernière éclipses sont des éclipses du même corps, la première a toujours lieu dans les 11 (ou 12) premiers jours de janvier et la dernière a toujours lieu dans les 11 (ou 12) derniers jours de décembre.
En conclusion le nombre maximal d'éclipses dans une année civile est de sept éclipses, avec obligatoirement deux éclipses de Soleil et deux éclipses de Lune, pour les trois autres toutes les combinaisons sont possibles. Le nombre minimal d'éclipses dans une année est de quatre, avec obligatoirement deux éclipses de Lune et deux éclipses de Soleil.
Nous allons nous intéresser à l'évolution des éclipses au cours du temps. Supposons que nous ayons une éclipse de Lune à une date donnée comment sera l'éclipse suivante ?
Généralement les éclipses successives de Lune sont séparées par six lunaisons (liées à une saison d'éclipses), donc il y a alternance de nœud lunaire (nœud ascendant et nœud descendant). Nous avons vu que durant une lunaison la Terre (ou le Soleil apparent) progressait en moyenne de 30,67° en longitude par rapport à la ligne des nœuds de l'orbite lunaire, donc au bout de six lunaisons la Terre (ou le Soleil apparent) progresse de 6 x 30,67° = 184,02°, donc si dl1 est la différence de longitude entre l'opposition et le nœud de l'orbite lunaire pour la première éclipse, l'éclipse suivante a lieu au nœud suivant et la différence dl2 entre l'opposition et ce nœud est égale à dl1 - (184,02° - 180°) = dl1- 4,02°. Donc l'opposition se déplace par rapport aux nœuds successifs d'environ 4° dans le sens direct d'une éclipse à la suivante.
Les éclipses de la suite courte S1 à S8 ont lieu à chaque saison d'éclipse, alternativement au nœud ascendant puis au nœud descendant. Il y a toujours au moins 8 éclipses dans la suite car l'arc BB' contient 7 arcs de 4° donc 8 éclipses. Il peut éventuellement y avoir une neuvième éclipse S9 (dans l'arc A'B'), dans ce cas cette éclipse est la dernière éclipse d'un triplet d'éclipses : Lune-Soleil-Lune. Dans ce cas l'opposition correspondant à la première éclipse du triplet a lieu une lunaison plus tôt et se trouve 30,67° en amont et cette éclipse est la première éclipse de la série courte suivante; nous avons donc un décrochage dans la suite des séries, la série suivante commence avant que la série en cours ne soit terminée. Ce phénomène peut également se produire lorsque la huitième éclipse de la série est très proche du point B'. On peut donc conclure que les éclipses des suites courtes sont séparées par six lunaisons et que la première éclipse d'une suite courte est séparée de la dernière éclipse de suite courte précédente par cinq lunaisons ou par une lunaison (antérieure) dans le cas d'un décrochage.
On remarque que les oppositions liées aux éclipses d'une série courte parcourent l'arc BB' dans le sens direct avec un pas moyen de 4°, les premières et les dernières éclipses sont des éclipses faibles (éclipses par la pénombre) et les éclipses du milieu de la série, proches des nœuds, sont des éclipses fortes (éclipses partielles par l'ombre, puis éclipses totales).
Attention, il ne faut jamais oublier que ces calculs sont faits à l'aide des révolutions moyennes de la Lune, la réalité est toujours un peu différente, l'avance de l'opposition n'est jamais exactement égale à 4° mais varie autour de cette valeur moyenne.
Sur le diagramme ci-dessus nous avons fait figurer l'ensemble des éclipses de Lune et de Soleil comprises entre l'an 1990 et l'an 2012. Les éclipses sur ce diagramme sont représentées de la manière suivante :
On remarque que les éclipses ont bien lieu aux voisinages des passages du Soleil dans la direction des nœuds ascendant et descendant de l'orbite lunaire. Sur ce dessin nous avons signalé la nature des noeuds (ascendant ou descendant) relative au éclipses de Soleil. De même on constate qu'à chaque saison d'éclipse on a un doublet d'éclipses Lune-Soleil ou un triplet d'éclipses Lune-Soleil-Lune (1991) ou Soleil-Lune-Soleil (2000) et que dans le cas des triplets les éclipses en première et dernière positions sont faibles et que l'éclipse médiane est forte. On observe que les éclipses de Soleil ou de Lune de début et de fin de séries courtes sont séparées par cinq ou une lunaisons. On vérifie également qu'il y a toujours au moins quatre éclipses par an, sur la période de temps représentée, il n'y a pas d'année à 7 éclipses, mais une année à 6 éclipses (2000).
La démonstration de l'existence des séries courtes de Soleil est également valable pour des séries courtes d'éclipses de Lune. Il suffit de remplacer la conjonction par l'opposition. Sur notre diagramme nous avons fait figurer les séries courtes de Soleil (en bleu) et les séries courtes de Lune (en rouge). On constate que les traits joignant les éclipses d'une même série pour chaque nœud sont parallèles et coupent les lignes des nœuds. Sur la période considérée, il n'y a pas de série courte à 9 éclipses. Mais on peut observer plusieurs décrochage de séries courtes, par exemple la série courte de Soleil Z débute avant que la série Y soit terminée (triplet d'éclipses de l'an 2000).