Définition

Auteur: Laurence Tresse

Charge électrique et interaction électromagnétique

definitionCaractéristique spécifique de la matière : sa charge électrique

Les charges électriques sont liées entre elles via l’interaction électromagnétique. L'unité de base de la charge électrique est le coulomb (C).

Ses effets sont constamment mis à profit dans la vie quotidienne via l’électricité ou la gastronomie, par exemple. Elle permet la cohésion de la matière, elle la structure et la transforme en divers états (solide, liquide, gaz), ses combinaisons multiples font émerger la diversité des corps matériels (vivants ou non) avec des propriétés physiques nombreuses.

attentionLoi de conservation

La charge électrique est conservée dans tout phénomène de transformation de la matière.


Force électrique

definitionExpression de la force électrique

Tout corps de matière ayant une charge électrique Q (positive ou négative), crée un champ électrique autour de lui dans une sphère de rayon R, accent(E;->)=k_C*(Q/R^2)*accent(u;->). k_C est la constante de Coulomb égale à unité(8,988*10^9;N*m^2*C^(-2))et accent(u;->) le vecteur unitaire partant de la charge Q. Dans ce champ, un autre corps de matière chargée électriquement va subir ce champ électrique attractif ou répulsif. La force d’interaction subie par une charge électrique q située à une distance d de la charge électrique Q vaut : accent(F_Q;->)=q*(k_C*Q/d^2)*accent(u;->).

force_electro.jpg
La force électrique subie par chacune des charges électriques est dipolaire (répulsive entre charges ++ ou --, et attractive entre charges +-, et leurs valeurs sont égales, F_Q=F_q=k_C*q*Q/d^2.
Crédit : ASM/Laurence Tresse

Force électromagnétique

remarqueElectricité et magnétisme

Pour des charges électriques immobiles, on parle d'interaction électrostatique. Des charges électriques en mouvement créent un courant électrique, lui-même créant un champ magnétique, d'où le terme d'interaction électromagnétique. La matière n'ayant pas de charge électrique ne subit pas ce champ électromagnétique.

Champ électromagnétique
champ-magnetique.jpg
Lorsque des particules ayant une charge électrique (q) sont en mouvement (accent(v;->)), elles créent un champ magnétique accent(B;->) (dit aussi induction magnétique) en sus du champ électrique accent(E;->). Ainsi ces particules sont soumises à la force magnétique en sus de la force électrique. Ces deux forces sont couplées sous le terme de force ou interaction électromagnétique accent(F;->), perpendiculaire au plan formé par les deux champs. Dans un champ électromagnétique, une particule possédant une charge électrique va subir la force, dite de Lorentz : F=F_e+F_m=q*E+q*v*B*sin(alpha)avec E le champ électrique (exprimé en N.C-1), B le champ magnétique (exprimé en Tesla), v la vitesse des particules, et α l'angle entre le champ B et la direction des particules.
Crédit : ASM/Laurence Tresse

Exercice : La force électromagnétique

exerciceInduction magnétique

Difficulté :   

Question 1)

En vous aidant de l'illustration ci-avant, quelle est l'expression de la force électromagnétique pour des particules chargées au repos ? Et que vaut l'induction magnétique ?

Question 2)

En vous aidant de l'illustration ci-avant, dans le cas d'un mouvement rectiligne, alpha=unité(90;degrés), quelle est l'expression de la force électromagnétique ?

Question 3)

Dans quelles unités du Système International (SI) est exprimé le Tesla, unité de l'induction magnétique ?

Question 4)

A votre avis, comment la force électromagnétique influe-t-elle la trajectoire initialement rectiligne des particules ?


Exercice : Le rapport de force entre l'électromagnétisme et la gravitation

exerciceInteractions entre l'électron et le proton

Difficulté :   

L'électron est une particule de matière chargée en masse, m=unité(9,109*10^(-31);kg), et chargée en électricité, q=-1.6*10^(-19)*C. Le proton est une particule de matière avec m=unité(1,673*10^(-27);kg) et ayant la même quantité de charge électrique que l'électron mais positive q=unité(1,6*10^(-19);C).

Question 1)

Calculer le rapport en masse entre le proton et l'électron.

Question 2)

Calculer le rapport de la force électrique sur la force gravitationnelle entre ces deux particules.

Question 3)

A de faibles distances de séparation, en l'absence de toutes autres forces extérieures, en déduisez-vous que l'électron va tomber sur le proton ? Pourquoi ?


Réponses aux exercices

pages_forces/force-electromagnetique-charge-exercice-1.html

Exercice 'Induction magnétique'


pages_forces/force-electromagnetique-charge-exercice-2.html

Exercice 'Interactions entre l'électron et le proton'