Il est désormais temps de l'utiliser, ce fameux oculaire. Commençons par le mettre à la sortie d'une lunette astronomique.
Une lunette astronomique est constituée de deux lentilles :
Dans le cas d'une lunette astronomique, les deux lentilles sont convergentes, et l'image de l'astre sera inversée.
La lunette de Galilée se distingue par la nature de la lentille oculaire. Cette dernière est ici divergente. L'image en sortie sera droite.
À focale équivalente, la lunette de Galilée sera plus courte. Nous verrons pourquoi.
L'objectif capte la lumière provenant de l'astre, et en fait l'image à son foyer.
Plus la focale de l'objectif sera grande, plus l'image sera également grande. Et si on se rappelle de la section sur l'appareil photo, on se souviendra que son angle de champ sera d'autant plus petit que cette focale est grande.
L'image intermédiaire étant en général petite, il faut la regarder avec une loupe : l'oculaire. Ce dernier grossit l'image et la rejette à l'infini.
Et si on fait appel au cours sur la loupe, on se souviendra que l'image finale est d'autant plus grande que la focale de l'oculaire est courte.
Dans une lunette (et, nous le verrons également, un télescope) l'objet est à l'infini et l'image aussi. Ce système n'a donc pas de foyer. Il est dit afocal.
Comment réaliser un tel système ? L'image intermédiaire est, par définition, au foyer principal image de l'objectif. Pour projeter l'image finale à l'infini, nous avons placé le foyer principal objet sur l'image intermédiaire.
Bref, pour fabriquer un système afocal, il suffit de superposer le foyer principal image de l'objectif avec le foyer principal objet de l'oculaire.
Nous allons calculer le grossissement d'une lunette astronomique en fonction des focales de son objectif et de son oculaire. Nous vérifierons ainsi si l'hypothèse émise à la page précédente est juste.
Par définition de grossissement
Il vient assez immédiatement que
et
D'où
Le grossissement d'une lunette se détermine à partir du rapport des focales de l'objectif () et de l'oculaire ()
L'image sera d'autant plus grande que la focale de l'objectif sera grande et celle de l'oculaire petite. On trouve bien le résultat qui était attendu.
Ce résultat est valable également pour la lunette de Galilée.
Difficulté : ☆☆ Temps : 20 min
On souhaite observer Jupiter à l'aide d'une lunette de de focale (il s'agit ici de la focale de l'objectif).
Calculer le diamètre apparent de cette planète à l'opposition.
Vous disposez de 3 oculaires de , et de focale respectivement. Lequel devez-vous utiliser pour obtenir le meilleur grossissement ?
Calculez alors le diamètre apparent de Jupiter dans cet oculaire.
La grande tache rouge mesure à peu près du diamètre de Jupiter. Sera-t-elle visible dans cet instrument ?
Ce qui va suivre ne s'applique pas aux lunettes de Galilée.
Le champ de la lunette est l'ensemble des points de l'espace visibles dans l'instrument. Comme dans le cas de l'appareil photo, cet espace est un cône. Les objets à l'intérieur de celui-ci seront visibles, ceux à l'extérieur, non.
L'image en sortie sera-t-elle petite ? (c'est-à-dire qu'on pourra l'embrasser en entier sans bouger l'oeil), ou au contraire sera-t-elle grande ? (il faudra alors bouger son oeil pour tout voir, ce qui n'est pas forcément agréable). C'est ce qu'on appellera le champ de l'oculaire.
Pour l'instant, nous ferons l'hypothèse que le champ de l'oculaire est celui de l'oeil, c'est-à-dire 50°.
Le champ d'une lunette astronomique (et d'un télescope) est le rapport du champ de l'oculaire par le grossissement :
Le champ est inversement proportionnel au grossissement. Pour une lunette donnée, et donc une focale fixée, le champ diminue avec la focale de l'oculaire. Plus l'oculaire est court, plus le champ est réduit.
La démonstration de ce résultat est ici.
Le champ d'une lunette est limité par le diaphragme de champ
L'expression du champ d'une lunette est très proche de celle d'un appareil photographique : où d est le diamètre du diaphragme de champ, au niveau du plan focal image de l'objectif, f_objectif la distance focale image de l'objectif.
La démonstration de ce résultat est très simple, puisqu'il suffit d'écrire la définition de la tangente de l'angle
Par une nuit de pleine Lune, on désire observer l'astre sélène. On possède une lunette de de focale, ainsi qu'un oculaire de de focale et de ° de champ.
Calculez le grossissement de cet instrument.
À partir du champ de l'oculaire, calculez l'angle de champ de la lunette. Pourra-t-on voir la Lune en entier dans l'oculaire ? Et la Galaxie d'Andromède (M31) ?
Dans les quelques pages à venir, nous allons rentrer dans des détails un peu plus techniques. Je les donne pour satisfaire la curiosité du lecteur, mais ils ne rentreront pas aux programmes de l'examen.
Considérons un instrument possédant un certain nombre de lentilles. Faisons avec l'image d'un point situé sur l'axe optique.
Ce point émet un faisceau lumineux. Certains rayons de ce faisceau ressortiront de l'instrument, d'autres seront interceptés par la monture d'une des lentilles.
Pour connaître la quantité de lumière qui ressort de l'instrument, il faut chercher la monture qui limite la taille du faisceau (sur notre image, c'est la monture ).
On nommera cette monture diaphragme d'ouverture.
Sur une lunette et un télescope, où on cherche à avoir le plus de lumière, on construit l'instrument de telle sorte que le diaphragme d'ouverture soit la première lentille (ou le miroir primaire). Comme c'est l'optique la plus grande, il serait dommage qu'elle ne serve à rien si c'est une autre monture plus petite qui joue le rôle de diaphragme d'ouverture.
En photographie, la problématique est différente. L'ouverture étant liée au temps de pose et à la profondeur de champ, on cherche à la contrôler en fonction de l'effet recherché. C'est donc un diaphragme physique, avec un diamètre ajustable, placé dans l'objectif, qui servira de diaphragme d'ouverture.
Pour rechercher quelle monture limite la largeur de notre faisceau, une méthode consiste à rechercher l'antécédent de ces montures par rapport à toutes les précédentes.
Un rayon qui passera chacun des conjugués traversera toutes les montures réelles . Trouver le diaphragme d'ouverture revient à chercher le conjugué dont le diamètre est le plus petit.
Ici, c'est . est appelé pupille d'entrée et diaphragme d'ouverture.
La pupille d'entrée est le conjugué du diaphragme d'ouverture dans l'espace objet.
De la même manière, on définit la pupille de sortie comme étant le conjugué du diaphragme d'ouverture dans l'espace image.
Pour profiter pleinement d'un instrument, il faut que la pupille de sortie et la pupille de l'oeil soient confondues.
Ce n'est pas nécessairement une lentille qui joue le rôle de diaphragme d'ouverture. Ça peut-être un vrai diaphragme, comme dans le cas de l'appareil photo.
On peut également placer un vrai diaphragme physique, en entrée, pour jouer le rôle à la fois de diaphragme d'ouverture et de pupille d'entrée. (En effet, s'il est placé en amont de la première lentille, il est son propre antécédent).
... je m'étendrai un peu plus sur la notion de champ d'une lunette, et j'introduirai les notions de diaphragme de champ et de lucarne.
On considère cette fois-ci un point , hors de l'axe optique. Intéressons-nous au rayon issu de et passant par le centre de la pupille d'entrée et donc au centre du diaphragme d'ouverture et de la pupille de sortie. Il est appelé rayon moyen ou rayon principal.
Faisons bouger jusqu'à ce que le rayon rayon principal soit intercepté par un des conjugués (ici ).
Par définition, ce conjugué est appelé lucarne d'entrée, et son antécédent associé (ici ) est appelé diaphragme de champ.
Le rayon touchant le bord du diaphragme de champ est noté . Il délimite le champ moyen de l'instrument. Le champ moyen est le disque de centre et de rayon .
C'est grosso-modo la portion visible de l'image. (Mais pas tout à fait)
Que voit-on réellement dans l'oculaire ?
Considérons maintenant un autre du point , de telle sorte que le rayon qui en est issu passe par le bord de la lucarne d'entrée et la pupille d'entrée (en vert sur la figure). Il délimite également un champ, plus petit que le précédent appelé champ de pleine lumière.
Le faisceau lumineux issu d'un point situé dans le champ de pleine lumière passera la pupille d'entrée sans être vignété par la lucarne.
Le faisceau lumineux issu d'un point situé en dehors de ce champ sera en partie, voir totalement, vignété par la lucarne d'entrée. Au delà de ce cercle de pleine lumière, la luminosité commence à décroître.
La luminosité décroît jusqu'au cercle de diamètre . est un point particulier : les rayons qui en sont issus passent par le bord supérieur de la lucarne d'entrée puis par le bord inférieur de la pupille d'entrée. Bref, le faisceau issu de passant par les lucarne et pupille d'entrée se résume à un seul rayon lumineux.
Il délimite le champ de contour. Ce champ inclut les deux autres champs définis précédemment.
Pur résumer, dans le champ de pleine lumière, toute la lumière rentrant dans la lunette en ressort. En dehors du champ de contour, plus aucune lumière ne ressort de l'instrument. Entre les deux, une partie de la lumière entrante est stoppée quelque part dans la lunette.
Visuellement, on observe un cercle au bord flou, où la lumière décroît progressivement du centre vers le bord. Ce n'est pas agréable à l'oeil.
Le jeu consiste donc à confondre ces trois champs, afin d'obtenir un bord net. Il faut pour cela déplacer le diaphragme de champ de façon à ce que son conjugué, la lucarne d'entrée, soit dans le même plan que l'objet observé. Dans le cas d'un instrument astronomique, il faut que la lucarne d'entrée soit à l'infini.
Une lunette est l'association de deux lentilles. Un objectif convergent et un oculaire convergent (lunette astronomique) ou divergent (lunette de Galilée).
Une lunette est un système afocal, c'est-à-dire que le faisceau issu d'un objet à l'infini ne converge pas en sortie de l'instrument. C'est à l'oeil de faire l'image de cet objet. La lunette est un instrument subjectif.
Pour réaliser un système afocal, il faut superposer le foyer principal image de l'objectif avec le foyer principal objet de l'oculaire.
Le grossissement d'une lunette est le rapport des focales de l'objectif et de l'oculaire,
Le grossissement sera d'autant plus grand que la focale de la lunette est grande, et celle de l'oculaire réduite.
L'angle de champ de la lunette est proportionnel à celui de l'oculaire (qui est en général de 40-50°) et inversement proportionnel au grossissement :
Il existe deux types de diaphragmes :
La Grande coupole de l'observatoire de Meudon abrite une des plus grandes lunettes de la planète. Il s'agit en fait de deux lunettes montées en parallèle. L'une mesurant de diamètre, l'autre . Elles possèdent toutes deux une focale de .
La lunette et son oculaire sont réglés de sorte à obtenir un système afocal. La focale de la lunette est de , celle de l'oculaire est de . Calculez le grossissement.
Quel est le diamètre apparent de Saturne, avec et sans ses anneaux, à l'opposition ? Quel sera alors son diamètre dans la lunette ?
La division de Cassini est-elle visible à la lunette ?
En supposant que l'angle de champ de l'oculaire est de 50°, calculez l'angle de champ de la lunette. Saturne est-elle visible en entier ?
Calculez l'ouverture de la lunette. Comparez cette valeur à celle des télescopes professionnels modernes.
pages_instruments-lunette/instru-lunette-grsst-exo.html
On parle d'opposition quand la planète est au plus proche de la Terre.
Le rayon équatorial de Jupiter est de . À l'opposition, elle se situe à environ de la Terre.
La résolution de l'oeil, c'est-à-dire la taille du plus petit détail visible, est de l'ordre de 1'.
pages_instruments-lunette/instru-lunette-champ-exo1.html
Le diamètre apparent de la Lune est de 0,5°. Celui de M31 est de .
pages_instruments-lunette/instru-lunette-bilan.html
Saturne est située à 10 u.a. du Soleil, et possède un diamètre de . Celui des anneaux est le double.
La division de Cassini mesure 5000 km de large.
Les télescopes modernes possèdent des ouvertures de l'ordre de .