Les avantages du télescope (2) |
Si on se souvient du premier chapitre, on a vu que l'indice optique des verres dépendait de la longueur d'onde. Or, une lentille, faite en verre, possède une distance focale dépendant de l'indice optique. Plus l'indice optique est élevé, plus sa vergence augmente. Sa distance focale dépend donc de la longueur d'onde. Les rayons rouges, verts et bleus ne convergeront donc pas au même endroit. Une lunette présente donc des aberrations chromatiques.
Ces aberrations deviennent très vite problématiques lorsqu'on veut atteindre une grande précision.
Un télescope ne présente pas de telles aberrations, l'angle de réflexion d'un rayon lumineux sur une surface métallique ne dépendant pas de la longueur d'onde.
Pour arriver jusqu'à l'oculaire, la lumière entrant dans une lunette doit traverser le verre de l'objectif. Le verre n'étant pas totalement transparent, il s'ensuit une perte de luminosité. Celle-ci est d'autant plus grande que l'objectif de la lunette est grand et par conséquent épais.
Si la réflexion sur un miroir n'est certes pas totale, il est facile de la porter à plus de 99%. Une réflexion entraînera moins de perte de photons qu'une transmission à travers du verre. Et quand on sait que dans les télescopes modernes, la lumière peut se réfléchir sur une vingtaine de miroir avant d'être exploitée par un instrument scientifique, on comprend mieux l'intérêt du miroir par rapport à la lentille.