Constructions géométriques

Auteur: Benjamin Mollier

Objet réel à travers une lentille convergente

Auteur: Benjamin Mollier

Objet en amont du foyer principal objet

Traçons l'image d'un objet à travers une lentille convergente

On dispose d'un objet AB en amont de la lentille et du foyer objet. On cherche à tracer son image à travers la lentille.

  1. On trace le rayon issu de B et passant par O. Il n'est pas dévié.
  2. Il faut un deuxième rayon pour obtenir l'image de B. En effet, dans les conditions de stigmatisme approché, deux rayons suffisent à définir un point image. On a le choix entre deux autres rayons. On trace par exemple le rayon issu de B et parallèle à l'axe optique. Il ressort de la lentille en passant par le foyer principal image F'. Il croise le premier rayon en B', image de B par la lentille.
  3. Par acquis de conscience, traçons un troisième rayon, et vérifions qu'il passe bien par B'. Traçons le rayon issu de B et passant par le foyer principal objet F. Il ressort parallèle à l'axe optique. On vérifie ainsi qu'il passe effectivement par le point B'.
  4. Il nous reste à tracer l'image A' du point A. On ne peut utiliser la même méthode que le point B car tous ces rayons sont identiques et confondus avec l'axe optique. Comment s'en sortir alors ? Utilisons la propriété d'aplanétisme. On sait que AB est perpendiculaire à l'axe optique. L'image A'B' l'est également. A' est donc le point de l'axe optique à la verticale de B'. Le tour est joué.
Construction géométrique
lmc-or-ir.gif
Crédit : ASM/B. Mollier

remarqueRemarques


Objet entre le foyer principal objet et le centre O

Approchons notre objet de la lentille de façon à placer l'objet entre le foyer principal objet et le centre de la lentille. On reproduit la construction précédente. Cette fois-ci l'image est en amont de la lentille. Elle est virtuelle. Elle est dans le même sens que l'objet. Elle est également plus grande. On retrouve le cas de la loupe. Que nous donne le tracé cette fois-ci ?

Objet entre le foyer principal objet et le centre O
lmc-or-iv.png
Crédit : ASM/B. Mollier

remarqueOn constate que


Objet virtuel à travers une lentille convergente

Continuons à faire avancer l'objet de telle manière qu'il passe de l'autre côté de la lentille. Il est dorénavant virtuel. Comment arriver à un tel résultat. Facile. En utilisant une deuxième lentille. On place un objet réel devant cette seconde lentille. Elle produit une image réelle. Plaçons la première lentille entre la seconde et l'image, et le tour est joué. Que nous donne le tracé cette fois-ci ?

Objet virtuel
lmc-ov-ir.png
Crédit : ASM/B. Mollier

qcmOn constate que

1)  L'image A'B' est :


2)  L'image A'B' est :



Tracé de rayon, objet à l'infini à travers une lentille convergente

introductionEt si l'objet est à l'infini ?

Les cas traités précédemment concernaient des objets à distance finie. En astronomie, les objets sont situés à l'infini. Dans ce paragraphe, nous allons placer l'objet AB à l'infini. Il possédera un diamètre apparent \alpha.

demonstrationTracé de l'image

  1. Comme les fois précédentes, on commence par tracer le rayon issu de B et passant par O. Il n'est pas dévié.
  2. Nous ne pouvons utiliser le rayon parallèle à l'axe optique, car celui-ci n'existe pas dans ce cas. Tous les rayons issus de B sont parallèles les uns aux autres. Nous pouvons cependant tracer le rayon parallèle au premier passant par le foyer objet. Il ressortira parallèle à l'axe optique. On constate qu'il coupe le premier dans le plan focal. C'est normal. Nous avons défini le plan focal image comme ceci.
  3. Rappelons ici que tous les rayons parallèles au premier se croiseront dans le plan focal image.
Objet à l'infini
lmc-oi-ir.jpg
Crédit : ASM/B. Mollier

remarqueRemarque

Remarquons tout de suite que la taille de l'image (sur un détecteur CCD par exemple) est tout simplement le produit du diamètre apparent (en radians) par la focale de l'instrument.

A'B' = \alpha \times f'


Objet réel à travers une lentille divergente

Auteur: Benjamin Mollier

Objet réel à travers une lentille divergente

introductionCas de la lentille divergente

Changeons de lentille pour passer aux lentilles divergentes. La différence par rapport aux cas précédents est que les positions des foyers objets et images sont inversées. Recommençons la procédure précédente.

demonstrationTracé de l'image

  1. On trace le rayon issu de B et passant par O. Il n'est toujours pas dévié.
  2. On trace le rayon issu de B et parallèle à l'axe optique. Il ressort de la lentille en passant par le foyer principal image F'. Mais ce foyer est en amont de la lentille.
  3. Par acquis de conscience, traçons un troisième rayon, et vérifions qu'il passe bien par B'. Traçons le rayon issu de B et passant par le foyer principal objet F. Il ressort parallèle à l'axe optique. On vérifie ainsi qu'il passe effectivement par le point B'
  4. Il nous reste à tracer l'image A' du point A. On ne peut utiliser la même méthode que le point B car tous ces rayons sont identiques et confondus avec l'axe optique. Comment s'en sortir alors. Utilisons la propriété d'aplanétisme. On sait que AB est perpendiculaire à l'axe optique. L'image A'B' l'est également. A' est donc le point de l'axe optique à la verticale de B'.
Construction géométrique
lmd-or-iv.jpg
Crédit : ASM/B. Mollier

qcmOn constate que

1)  L'image A'B' est :


2)  L'image A'B' est :



Objet virtuel à travers une lentille divergente

qcmObjet virtuel à travers une lentille divergente

Bon, je pense que vous avez compris le principe. Je vous laisse les deux suivants en exercice.

1)  Tout d'abord, considérons le cas d'un objet virtuel AB et d'une lentille divergente. Trouvez le tracé correct.





Réponses aux QCM

pages_lmc/lm-ov-ir.html

QCM 'On constate que'

pages_lmd/lmd-or-iv.html

QCM 'On constate que'

pages_lmd/lmd-ov-ir.html

QCM 'Objet virtuel à travers une lentille divergente'