Relations de conjugaison

Auteur: Benjamin Mollier

Relations de conjugaison

Ne vous inquiétez pas, on ne va pas être obligé de systématiquement tracer toutes nos images dès qu'on voudra obtenir la moindre position ou taille. Il existe des relations simples, nommées relations de conjugaison, permettant d'accéder à toutes ces données, connaissant uniquement la distance focale de la lentille.

Nous allons les démontrer à partir des constructions précédentes.

Dessins-optique-geo.png
Crédit : B. Mollier

Grandissement

Nous avons vu que la taille de l'image n'est pas nécessairement la même que celle de l'objet. Et celle-ci varie en fonction de la distance de l'objet et de la distance focale.

definitionGrandissement

Nous allons appeler grandissement le rapport des tailles de l'objet et de l'image.

\gamma = \frac{\overline{A'B'}}{\overline{AB}}

lmc-grandissement.png
Crédit : B. Mollier

En appliquant le théorème de Thalès, on trouve immédiatement que :

\gamma = \frac{\overline{OA'}}{\overline{OA}}

remarqueRemarque

Connaissant la distance de l'objet et de l'image, il est donc possible de calculer la taille de l'image.

Si le grandissement est positif, alors l'objet et l'image sont dans le même sens ; s'il est négatif, l'image est inversée par rapport à l'objet.

Si le grandissement est supérieur à 1, ou inférieur à -1, alors l'image est plus grande que l'objet. S'il est compris entre -1 et 1, l'image sera plus petite.


Exercice : quelques grandissements

Auteur: B. Mollier

exerciceQuelques grandissements

Difficulté :    Temps : 5 min

Voici 3 constructions géométriques :

Construction 1
lm-grd-exo-1.png
Crédit : ASM/B. Mollier
Construction 2
lm-grd-exo-2.png
Crédit : ASM/B. Mollier
Construction 3
lm-grd-exo-3.png
Crédit : ASM/B. Mollier
Question 1)

Calculez le grandissement dans les trois cas.


Relation de conjugaison de Newton

definitionGrandissement : origines aux foyers

Et si on ne connaît pas la position de l'image ? Nous allons utiliser les foyers. En appliquant cette fois-ci le théorème de Thalès deux fois de chaque côté de la lentille, on obtient :

\gamma = \frac{\overline{FO}}{\overline{FA}} = \frac{\overline{F'A'}}{\overline{F'O}}

lmc-newton.png
Crédit : ASM/B. Mollier

Et voilà, connaissant la distance focale et la distance de l'objet, on peut calculer le grandissement.

definitionRelation de conjugaison de Newton (origines aux foyers)

Remarquons qu'à partir de ces deux formules, on va pouvoir calculer la distance de l'image.

\overline{FA}.\overline{F'A'} = -f'^2

Nous venons d'établir la relation de conjugaison de Newton. Elle est aussi appelée relation de conjugaison avec origine au foyer, car les distances de l'objet et de l'image sont comptées à partir des foyers principaux.


Exercices : relations de conjugaison de Newton

Auteur: B. Mollier

exerciceQuelques grandissements (2)

Difficulté :    Temps : 5 min

On reprend les mêmes et on recommence !

Construction 1
lm-grd-exo-1.png
Crédit : ASM/B. Mollier
Construction 2
lm-grd-exo-2.png
Crédit : ASM/B. Mollier
Construction 3
lm-grd-exo-3.png
Crédit : ASM/B. Mollier
Question 1)

Sachant que la distance focale est de 4 cm en valeur absolue dans les 3 cas, retrouvez les valeurs de grandissement précédemment établies.

Auteur: B. Mollier

exerciceFormule de Newton

On considère une lentille convergente de vergence V=10\ \delta. On place un objet à une distance D = 5\ cm en amont du centre de la lentille.

Question 1)

Calculez la position de l'image.

Question 2)

Est-elle réelle ou virtuelle ?

Question 3)

Calculez sa taille.


Relation de conjugaison de Descartes

demonstrationUne autre relation de conjugaison

Nous pouvons également obtenir une relation similaire, avec origine au centre de la lentille cette fois-ci. En partant de la formule du grandissement :

\frac{\overline{A'B'}}{\overline{AB}}  =  \frac{\overline{F'A'}}{\overline{F'O}} = \frac{\overline{F'O}+\overline{OA'}}{\overline{F'O}} = 1 + \frac{\overline{OA'}}{\overline{F'O}}

\frac{\overline{OA'}}{\overline{OA}}  =  1 - \frac{\overline{OA'}}{\overline{OF'}}

definitionRelation de conjugaison de Descartes (avec origine au centre)

On obtient ainsi la relation de conjugaison de Descartes :

\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}

remarqueNotations

Remarque, on note parfois les distances \overline{OA} et \overline{OA'} respectivement p et p'.

\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}


Exercices : relations de conjugaison

Auteur: B. Mollier

exerciceLunettes pour myope

Difficulté : ☆☆   Temps : 10 min

Considérons une paire de lunettes correctrices pour la myopie. L'ordonnance indique une vergence de -2\ \delta.

LunettesMyope.jpg
Crédit : B. Mollier
Question 1)

Quelle est la distance focale image de la paire de lunettes ? Quelle est le type de lentilles utilisées ?

Question 2)

Muni de cette paire de lunettes, je lis un livre situé à 30 cm de mon visage. Quelle est la distance de l'image de cet ouvrage à travers les lunettes ?

Auteur: B. Mollier

exerciceCondition de formation d'image

Difficulté : ☆☆☆   Temps : 20 min

On dispose d'un objet, d'un écran, et d'une lentille convergente de distance focale image f'.

Question 1)

Quelle doit être la distance minimale D entre l'objet et l'écran pour pouvoir y former son image ?


Réponses aux exercices

pages_lentilles-minces/lm-grandissement-exo.html

Exercice 'Quelques grandissements'


pages_lentilles-minces/lm-grd-exo2.html

Exercice 'Quelques grandissements (2)'


pages_lentilles-minces/lm-grd-exo2.html

Exercice 'Formule de Newton'


pages_lentilles-minces/lm-rc-exos.html

Exercice 'Condition de formation d'image'