Définitions

Auteur: Benjamin Mollier

Miroirs sphériques

definitionQu'est-ce qu'un miroir sphérique ?

Qu'est-ce qu'on appelle un miroir sphérique ? Comme son nom l'indique, c'est un miroir. C'est-à-dire une portion de verre recouverte d'une surface métallique réfléchissante. Mais nous venons de le voir dans l'introduction, il ne s'agit pas d'un miroir plan. En effet, celui-ci est découpé dans une portion sphérique de verre.

Portion de sphère
ms-portion-sphere.png
Un miroir sphérique est une portion de sphère (un morceau de boule de cristal creuse) sur laquelle est déposée une couche métallique réfléchissante.
Crédit : ASM/B. Mollier
Portion de sphère
ms-portion-sphere2.png
Un autre découpage possible.
Crédit : ASM/B. Mollier

remarqueRemarque

En pratique, les miroirs sont rarement taillés dans des portions de sphère. Ils sont découpés dans des paraboloïdes de révolution (miroirs paraboliques) ou dans des hyperboloïdes de révolution (miroirs hyperboliques). Cependant, en première approximation, nous pourrons les considérer comme sphériques.

Miroir parabolique
ms-paraboloide.png
En coupant une portion d'un paraboloïde de révolution, on obtient un miroir parabolique. C'est le cas de nombreux miroirs comme les miroirs primaires des télescopes, ou la parabole pour capter le satellite.
Crédit : ASM/B. Mollier
Miroir hyperbolique
ms-hyperboloide.png
En coupant une portion d'un hyperboloïde de révolution, on obtient un miroir hyperbolique. C'est le cas de certains miroirs secondaires de télescopes.
Crédit : ASM/B. Mollier

Miroir concave, miroir convexe

definitionDeux types de miroirs ?

On voit qu'il est possible d'aluminer soit l'intérieur, soit l'extérieur de la sphère. On obtient alors deux types de miroirs :

Miroir concave
ms-portion-concave.png
En aluminant l'intérieur de la sphère, on obtient un miroir concave.
Crédit : ASM/B. Mollier
Miroir convexe
ms-portion-convexe.png
En aluminant l'extérieur de la sphère, on obtient un miroir convexe.
Crédit : ASM/B. Mollier

exempleQuelques exemples

On retrouve ces miroirs dans la vie quotidienne. Les miroirs convexes par exemple, sont maintenant utilisés dans les rétroviseurs extérieurs des voitures, ou pour les miroirs que l'on dispose à la sortie des garages ou à certaines intersections où la visibilité est nulle. Les miroirs concaves se retrouvent dans certaines salles de bain ou miroirs de poche.

Miroir d'intersection
P1030051.jpg
Un miroir convexe, à la sortie d'un porche, afin de pouvoir voir si un véhicule arrive.
Crédit : B. Mollier
Miroir de salle de bain
ms-miroir-sdb.jpg
Deux exemples de miroirs de salle de bain (pris dans un vitrine rue de Babylone à Paris). À droite, un miroir plan, comme étudié au chapitre sur les lois de Snell-Descartes ; à gauche, un miroir concave. Notez l'inversion de l'image, à gauche, et la différence de mise au point.
Crédit : B. Mollier

Jouons avec une petite cuillère

introductionPrenons une petite cuillère...

Prenons une petite cuillère. Regardons-la attentivement. Son dos est convexe, son creux est concave. On a à notre disposition les deux types de miroirs.

exempleY aller avec le dos de la cuillère

Si nous nous regardons dans le dos de la cuillère que voyons nous ? Notre reflet, plus petit et à l'endroit. Rapprochons ou éloignons-la. On obtient toujours la même chose.

Dos de la cuillère
CuillereCvx.jpg
Sur le dos de la cuillère, convexe, l'image est droite.
Crédit : B. Mollier

Si on l'éclaire avec le faisceau lumineux d'une lampe torche et que l'on place un écran à proximité, on aura beau faire toutes les contorsions possibles, jamais nous n'arriverons à voir l'image de ce faisceau sur l'écran. Au contraire, il diverge.

Cela ne vous rappelle rien ? Ça ressemble un peu au comportement de la lentille divergente, non ? Alors peut-être qu'en retournant la cuillère, on retrouvera l'équivalent d'une lentille convergente...

exempleLe creux de la cuillère

Regardons nous maintenant dans le creux de celle-ci. Ah ? Cette fois, notre reflet est à l'envers. Rapprochons-la. Notre image grossit puis se retourne. Notre reflet est à l'endroit et grossit. Bon, d'accord, ça ne marche pas avec toutes les cuillères. Il faut en général se rapprocher beaucoup et se contenter de l'image de notre oeil. Dans ce cas, prenez un miroir de poche.

Creux de la cuillère
CuillereCcv.jpg
Dans le creux de la cuillère, concave, l'image est inversée.
Crédit : B. Mollier

Et si on reprend la lampe torche, cette fois, le faisceau converge et on peut en faire l'image sur un écran, comme une lentille convergente.

conclusionConclusion

On vient de mettre en évidence quelques propriétés des miroirs sphériques :


Résumé

definitionMiroir concave ou convergent

ms-ccv-2.png
Crédit : ASM/B. Mollier

definitionMiroir convexe ou divergent

ms-cvx-2.png
Crédit : ASM/B. Mollier

Un rayon passant par le centre

definitionGéométrie d'un miroir sphérique

Un miroir sphérique est découpé dans une sphère. Appelons C le centre de cette dernière.

Notons au passage le point S, sommet du miroir, c'est-à-dire l'intersection de l'axe optique (l'axe de symétrie du miroir) avec le miroir.

Centre et sommet d'un miroir sphérique
ms-centre-sommet.png
Le centre C du miroir est le centre de la sphère dans laquelle il est découpé. Il est en avant du miroir dans le cas du miroir concave, en arrière dans le cas convexe. Le sommet S du miroir est l'intersection de l'axe optique avec celui-ci.
Crédit : ASM/B. Mollier

definitionPropriété des rayons passant par le centre C

Tout rayon lumineux passant par le centre C du miroir est rayon de la sphère. Que se passe-t-il quand il atteint le miroir ? Il arrive perpendiculairement à la tangente au miroir. Donc, localement, tout se passe comme si le rayon lumineux incident tombait à la verticale d'un miroir plan. Possédant un angle d'incidence nul, il repart d'où il vient (cf lois de Snell-Descartes). Il repasse par le centre.

Rayon passant par le centre
ms-rayon-centre.png
Un rayon passant par le centre revient par le même chemin.
Crédit : ASM/B. Mollier

Bref, tout rayon incident passant par le centre C d'un miroir est confondu avec son rayon réfléchi.

definitionPropriété des rayons passant par le sommet S

Le sommet S appartient à l'axe de symétrie du système. Donc, si un rayon incident arrive en S, son rayon réfléchi sera son symétrique par rapport à l'axe optique.