Ni trop chaud, ni trop froid


La limite froide

Ce qui permet à la Terre de garder son eau liquide est un équilibre subtile entre le flux solaire qu'elle reçoit et le flux thermique qu'elle émet, fonction notamment de sa température.

La limite froide de l'habitabilité

La glaciation galopante
runawayglaciation.png
Mécanisme de déstabilisation par glaciation galopante, aussi appelée "Runaway Glaciation".
Crédit : M. Turbet / F. Forget

Prenez la Terre et éloignez la du Soleil. Le flux solaire qu'elle reçoit va diminuer, impliquant une baisse directe de la température à sa surface. De ce fait, de la glace et de la neige supplémentaires vont se former et donc augmenter le pouvoir réfléchissant - appelé aussi "albédo" - de la surface. Un dépôt de neige peut être par exemple jusqu'à 10 fois plus réfléchissant qu'une étendue d'eau liquide. Ainsi, le flux solaire absorbé diminuera de plus belle, conduisant à des températures encore plus basses ...

On représente ci-dessous une simulation de la Terre, éloignée soudainement de 11% du Soleil. Après 20 ans, et via le mécanisme déstabilisant de "Runaway glaciation" (glaciation galopante) présenté ici, la Terre est complètement gelée.

La glaciation de la Terre
La Terre soumise à un flux solaire ( F \propto \frac{1}{d_^{2}} avec d la distance Terre-Soleil ) égal à 80% de sa valeur actuelle. Au bout de 20 ans, la planète est entièrement recouverte de glace.
Crédit : B. Charnay

L'effet "boule de neige"

Si la Terre, par ce phénomène de "Runaway Glaciation", finit par être complètement recouverte de glace, alors on dit qu'elle est entrée dans l'état "Terre Boule de Neige" ou aussi "Snowball Earth". Dans cet état, les températures à la surface de la Terre sont très froides, et l'albédo élevé de la glace/neige conduit la Terre à réfléchir une grande partie du flux solaire qu'elle reçoit.

Si on réexpose la Terre gelée au flux solaire qu'elle reçoit actuellement, elle restera gelée, suivant un phénomène d'hysteresis. Ainsi, pour un même flux solaire, la Terre peut être dans deux états d'équilibre différents ! Pour que la Terre Boule de Neige retrouve son état actuel, il faut qu'un ingrédient supplémentaire entre en jeu, comme par exemple une augmentation des gaz à effets de serre ...

Les équilibres possibles du Bilan Radiatif Terrestre
equilibrium.png
On représente ici les deux termes - \sigma T^4 et (1-A)F\odot - du bilan radiatif simplifié de la Terre, avec A l'albédo planétaire et F \odot le flux solaire reçu. Il existe alors trois solutions possibles. La première, stable, correspond à une température clémente. C'est l'état dans lequel se trouve la Terre aujourd'hui. La seconde, instable, n'existe pas physiquement. La troisième, stable, correspond à une température froide. Dans cet état, l'albédo de la planète est très élevé, car celle-ci est recouverte de neige et de glace. On appelle cet état la "Terre boule de neige" ou aussi "Snowball Earth".
Crédit : M. Turbet

La limite chaude

L'emballement de l'effet de serre
runaway_greenhouse.png
Mécanisme de déstabilisation par effet de serre divergent, aussi appelé "Runaway Greenhouse".
Crédit : M. Turbet / F. Forget
L'échappement de l'hydrogène
hydrogen_escape.png
Les molécules d'H2O qui atteignent la haute atmosphère peuvent être photodissociées par le rayonnement UV reçu. Les atomes d'hydrogène libérés, légers, peuvent alors s'échapper de l'attraction gravitationnelle de la planète.
Crédit : F. Forget

L'effet "Runaway Greenhouse"

Prenons maintenant la Terre et rapprochons là de quelques pourcents du Soleil. L'augmentation du flux lumineux que la planète reçoit va provoquer une augmentation de sa température de surface. Les océans et mers de la Terre, réchauffés, vont évaporer plus d'eau. La vapeur d'eau étant un puissant gaz à effet de serre, la température de surface de la Terre va continuer d'augmenter. Si le flux solaire reçu par notre planète est alors suffisamment grand, l'évaporation des océans va s'emballer jusqu'à leur épuisement. La vapeur d'eau correspondante va former une épaisse atmosphère opaque au rayonnement infrarouge thermique. La température de la surface augmentera juqu'à plus de 1500°C pour pouvoir rayonner dans le visible où la vapeur d'eau laisse passer le rayonnement nécessaire à son refroidissement.

Les planètes habitables de catégorie I possèdent de l'eau liquide en surface et sont donc tout autant sujettes à ce mécanisme d'emballement de l'effet de serre.

L'effet "Moist Greenhouse"

Une planète habitable de catégorie I possède de l'eau liquide à sa surface, et donc de la vapeur d'eau dans son atmosphère. Une partie de cette vapeur d'eau va rejoindre les hautes couches de l'atmosphère. Le flux UV de l'étoile va photodissocier les molécules d'eau et les atomes d'hydrogène, légers, vont alors s'échapper vers l'espace.

Le mécanisme d'emballement de l'effet de serre prédit qu'une planète qui se réchauffe aura de plus en plus de vapeur d'eau dans son atmosphère, et donc perdra de plus en plus rapidement son eau vers l'espace. Si cet échappement est suffisamment rapide (suffisamment d'eau dans la haute atmosphère, suffisamment de radiation UV), alors la planète habitable peut perdre la totalité de son eau avant même d'être entrée dans l'état du "Runaway Greenhouse". On appelle cette limite chaude de l'habitabilité le "Moist Greenhouse".


La Zone Habitable Classique

La zone habitable
hz2.png
Pour une planète donnée, la Zone Habitable est ici représentée en fonction de la masse de son étoile et de la distance à laquelle elle l'orbite.
Crédit : J. Kasting

La Zone Habitable désigne classiquement la gamme de distances pour lesquelles il n'est pas impossible qu'une planète puisse avoir de l'eau liquide à sa surface, et donc être propice à une vie capable d'exploiter la photosynthèse. Bien sur, un objet peut se trouver dans cette zone et ne pas être habitable (exemple: la Lune).

Une planète trop proche de son étoile verra toute son eau liquide s'évaporer à cause du mécanisme de "Runaway Greenhouse". Pour une étoile donnée, on définit alors la limite "intérieure" - ou chaude - de la Zone Habitable par la distance orbitale minimale jusqu'à laquelle il est possible qu'une planète puisse garder son eau liquide. En pratique, on prend une planète totalement ou partiellement couverte d'eau liquide, et on cherche la distance minimale jusqu'à laquelle on peut l'emmener avant que ses océans ne s'évaporent.

Une planète trop éloignée de son étoile verra toute son eau liquide geler à cause du mécanisme de "Runaway Glaciation". Pour une étoile donnée, on définit alors la limite "extérieure" ou - froide - de la Zone Habitable par la distance orbitale maximale jusqu'à laquelle il est possible qu'une planète puisse garder son eau liquide. À la limite, on choisit l'atmosphère de la planète pour qu'elle maximise l'effet de serre. En pratique, la plupart des travaux de recherche ont eté effectué en supposant une planète possédant une atmosphère épaisse de CO2 (un bon gaz à effet de serre, et composant probable de l'atmosphère des planètes telluriques) : on cherche alors la distance maximale jusqu'à laquelle une telle planète peut garder de l'eau liquide à sa surface.


La vitesse de rotation

La Terre a une période de rotation sur elle-même de 24 heures, et autour du Soleil de 365 jours. La Lune, elle pourtant, montre toujours la même face à la Terre. Sa période de rotation autour de la Terre est égale à sa période de rotation sur elle-même (sidérale). On dit alors qu'elle a une résonance spin-orbite 1:1 ; on dit aussi qu'elle est en rotation synchrone. Mercure fait 3 tours sur elle-même quand elle fait 2 tours autour du Soleil. Elle a une résonance spin-orbite 3:2.

La résonance spin-orbite
Tidal_lock.gif
Ici, on représente deux cas. La première planète (verte/bleue) est en résonance spin-orbite 1:1 / en rotation synchrone. La deuxième planète (noire/grise) est en résonance spin-orbite 2:1.
Crédit : Wikipedia
Rotation et Zone Habitable
hz2_tidal.png
Pour une planète donnée, la Zone Habitable est ici représentée en fonction de la masse de son étoile et de la distance à laquelle elle l'orbite. Les planètes qui se trouvent dans la région gauche définie par la distance de synchronisation se retrouveront en rotation synchrone autour de leur étoile en moins de 4,5 milliards d'années.
Crédit : J. Kasting

Il existe en fait une multitude de possibles périodes de rotation pour une planète autour de son étoile. Pourtant, quand une planète a une orbite trop proche de son étoile, l'action des forces de marées influence sa rotation. D'une part, elles tendent à redresser son axe de rotation (l'obliquité tend vers zero) et ses pôles ne reçoivent presque plus de rayonnement stellaire. D'autre part, elles freinent sa rotation, jusqu'à eventuellement la synchroniser autour de son étoile (la même face est toujours exposée à l'étoile). C'est par exemple ce qu'il s'est passé pour la Lune autour de la Terre.

La Zone Habitable autour d'étoiles de faible masse est relativement proche de l'étoile. En conséquence, les planètes situées dans la Zone Habitable de ces étoiles auront une obliquité nulle et une rotation ralentie, voire synchrone.

L'habitabilité des planètes en rotation synchrone

Quand une planète est en rotation synchrone autour de son étoile, elle reçoit toute son énergie (lumineuse) sur la même face. Les deux pôles (Nord et Sud) et la face cachée ne reçoivent alors plus d'énergie. Dans certains cas, l'eau liquide à la surface de la planète peut se retrouver intégralement piégée sous forme de glace au niveau des pôles ou bien de la face cachée. On appelle cela un "piège froid".

Sur ce type de planètes, les climats possibles (détaillés dans la suite de ce cours) sont bien différents de ce que nous connaissons sur Terre ...