Le processus d’impact et ses conséquences varient avec la vitesse du corps impacteur et la nature du sol impacté et de son impacteur. Si la planète possède une atmosphère, le projectile est freiné et chauffé ce qui peut entrainer sa vaporisation partielle voire totale ou sa fragmentation. Les météorites de moins de 10 m de diamètre parviennent rarement jusqu’au sol terrestre. Les modèles d’ablation atmosphérique prédisent un nombre réduit de cratère de moins de 20 km de diamètre sur Titan (seul satellite du système solaire possédant une atmosphère substantielle, voir chapitre Erosion et sédimendation des surfaces avec atmosphère), ce que semble confirmer les observations de la sonde Cassini.
Lorsque le projectile, ou ce qu’il en reste, atteint la surface, le processus d’impact commence ; on le décompose classiquement en trois phases qui, en réalité, se chevauchent dans le temps : la phase de contact et compression, la phase d'excavation et la phase de modification et relaxation. C'est ce qu'illustre la figure ci-contre.
L'appliquette "Cratérisation" permet d'appréhender les effets d’un impact météoritique sur Mercure, la Terre (avec ou sans atmosphère), la Lune et Mars en fonction des caractéristiques de l’impacteur (vitesse, angle d’arrivée, taille, densité) et de la surface impactée (densité).
Cette appliquette illustre les effets d’un impact météoritique sur Mercure, la Terre (avec ou sans atmosphère), la Lune et Mars en fonction des caractéristiques de l’impacteur (vitesse, angle d’arrivée, taille, densité) et de la surface impactée (densité).
Pour le détail des formules à partir desquelles a été construire cette appliquette, se référer à : G. S. Collins, H. J. Melosh, R. A. Marcus: Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth, Meteoritics & Planetary Science 40, Nr 6, 817–840 (2005).
A vous de jouer en répondant notamment aux questions ci-dessous!
On rappelle que les astéroïdes sont composés de roches et de métaux ; leur densité varie entre 2000 et 8000 et leur vitesse à l’entrée de l’atmosphère terrestre est généralement comprise entre 11 et 21 km/s. Les comètes, quant à elle, sont essentiellement composées de glace ; leur densité est comprise entre 500 et 1500 et leur vitesse à l’entrée de l’atmosphère terrestre est généralement comprise entre 30 et 72 km/s.
En utilisant l'appliquette, vérifiez, quand cela est possible, les résultats des exercices Création du régolithe lunaire par cratérisation et Cratères secondaires.
Retrouvez le diamètre de transition entre cratère complexe et cratère simple pour chaque corps planétaire. Comment évolue-t-il avec la gravité ?
En comparant les sorties de l’appliquette pour les cas « Terre » et « Terre sans atmosphère », déduisez le principal effet de l’atmosphère.
Retrouvez le coefficient de la loi en puissance qui lie le diamètre final d’un cratère simple à l’accélération de pesanteur du corps sur lequel il se trouve.
Estimez le diamètre de la météorite à l’origine de Meteor Crater, en Arizona, sachant que ce cratère a un diamètre d’environ 1.2 km, que l’impacteur était très probablement riche en fer et en nickel, et qu’il a frappé la Terre avec un angle d’environ 80°. Vérifiez que l’ordre de grandeur théorique de la profondeur finale du cratère est en accord avec la réalité.
Mêmes questions pour le cratère lunaire complexe Tycho dont le diamètre est de 85 km sachant que l’impacteur qui lui a donné naissance avait une trajectoire basse au dessus de l’horizon (c’est-à-dire avec un angle d’arrivée d’au moins 45°) et que sa densité était proche de celle de la Lune.
En l’absence d’échantillon du sol, la datation par comptage de cratères est la seule méthode pour estimer l’âge relatif des surfaces planétaires. Celle-ci s’appuie sur deux règles simples:
Ces règles reposent sur l’idée que la population des impacteurs a évolué au cours du temps ; la taille des projectiles et le taux de cratérisation étaient nettement plus importants dans la jeunesse du système solaire, à une époque où les débris étaient abondants. Ces derniers ont progressivement été mobilisés pour former les planètes, les plus gros planétésimaux disparaissant en premier jusqu’à ce que les impacteurs moyens puis petits se fassent rares aussi. Si le bombardement météoritique a affecté de façon uniforme la surface d’une planète donnée, certaines régions en ont gardé toutes les cicatrices alors que d’autres ont connu depuis des épisodes de rajeunissement (par volcanisme par exemple, voir Renouvellement des surfaces).
L’échelle ci-contre renseigne sur le niveau de cratérisation des principales surfaces solides du système solaire, les surfaces les plus jeunes étant les moins cratérisées.
Ainsi, l’étude de la distribution des cratères (nombre de cratères en fonction de leur taille) permet-elle de donner un âge relatif à différentes unités de surface. Pour déterminer leur âge absolu il faudrait connaître précisément l’histoire de l’évolution du flux d’impacteurs dans le système solaire. Une partie de cette histoire a pu être retracée grâce à la datation radiogéniques d’échantillons lunaires collectés lors des missions Apollo. Ces datations précises, comparées à la distribution des cratères lunaires, ont permis de dresser des courbes d’évolution dans le temps de la densité et de la taille des impacteurs, révélant notamment un pic d’impacts il y a environ 4 milliard d’années lors d’une phase appelée le Grand Bombardement Tardif (ou Late Heavy Bombardement, LHB). Les surfaces du système solaire ayant atteint le niveau de saturation sont sans doute vieilles de 4 milliards d’années.
En tenant compte du fait que le flux des impacteurs devait varier avec la distance au Soleil et, lorsque cela est nécessaire, de la présence d’une atmosphère, les enseignements du cas lunaire peuvent être extrapolés afin de dater les autres surfaces planétaires. Cependant il est important de garder à l’esprit que cette extrapolation est sujette à caution ; la position des planètes et la densité des atmosphères ont pu, en effet, varier au cours de l’histoire du système solaire.
pages_planetologie-surface/applicratere.html
10 km pour Mercure, 3.2 km pour la Terre, 17.5 km pour la Lune et 8 km pour Mars. Voir aussi l'exercice Catégorie de cratères.
La présence d’une atmosphère freine l’impacteur ce qui a pour effet de réduire sa vitesse d’arrivée à la surface et donc les effets de l’impact (notamment la taille du cratère et l’amplitude du séisme qu’il génère).
La réponse est -0.22. Voir la page Processus de cratérisation.
La densité de la Terre est .
L'impacteur qui a donné naissance à Meteor Crater faisait environ 50 m de diamètre. La profondeur du cratère est de l’ordre de 180 m.
La densité de la Lune est .
L'impacteur qui a donné naissance au cratère Tycho faisait probablement entre 8 et 10 km de diamètre. Cet impact a eu lieu il y a seulement 109 millions d'années. Tycho a une profondeur d’environ 4.8 km.