Propriétés des exoplanètes


Nombre de planètes

De ces découvertes, on peut tirer quelques leçons intéressantes.

Voisinage du Soleil
Discovery.jpg
La plupart des méthodes utilisées ne permettent de détecter des planètes qu'autour des étoiles situées à moins de 300 années-lumière du Soleil.
Crédit : NASA

La proportion d'étoiles ayant au moins une planète

Un des principaux résultats de cette recherche est qu'une proportion importante d'étoiles possèdent au moins une planète, même s'il est difficile de quantifier cette proportion qui dépend de la région de la Galaxie et du type d'étoile. Entre 3 et 4.5% des étoiles de type solaire ont des planètes géantes de période inférieure à 100 jours (c'est-à-dire plus près de l'étoile que Mercure). Des planètes plus petites et plus loin de l'étoile sont beaucoup plus fréquentes et pourraient concerner 40% des étoiles dans le voisinage solaire (voir la figure). La méthode des micro-lentilles gravitationnelles, qui sonde des étoiles beaucoup plus loin dans la Galaxie, semble montrer qu'une étoile possède, en moyenne, 1.6 planètes entre 0.5 et 10 unités astronomiques. Il y aurait donc plus de planètes que d'étoiles dans la Galaxie.


Caractéristiques des orbites

Caractéristiques des orbites

Les paramètres orbitaux des exoplanètes révèlent des systèmes beaucoup plus chahutés que le système solaire, où les orbites des planètes sont bien circulaires, dans le même plan, avec une séparation claire entre les planètes terrestres situées près de l'étoile et les planètes géantes, plus éloignées du Soleil.

Orbites des exoplanètes
orbites-exoplanets.png
Orbites des exoplanètes : excentricité en fonction de la distance à l'étoile.
Crédit : Jean Schneider

Distances planète-étoile

Une grande proportion des planètes, notamment des planètes géantes, découvertes à ce jour sont beaucoup plus près (jusqu'à 100 fois) de leur étoile que ne l'est Jupiter du Soleil. Cela a constitué une grande surprise car la théorie prévoit qu'une planète géante doit se former à au moins 5 UA de son étoile. Cette disparité s'explique maintenant par le phénomène de "migration" : une fois qu'une planète commence à se former relativement loin de son étoile dans le disque protoplanétaire, un phénomène d'interaction gravitationnelle entre le disque et la planète en formation se produit. Elle a pour effet de freiner la planète qui du coup se rapproche de son étoile, migre, jusqu'à ce que l'interaction s'arrête. Ces planètes étant très proches de leur étoile, celle-ci les porte à une température élevée (jusqu'à 1200 K).

Excentricité des orbites

Une autre surprise a été de constater que la majorité des orbites planétaires sont assez ou très excentriques : elles forment des ellipses plus ou moins allongées au lieu d'être quasi circulaires comme dans le système solaire. On n'est pas sûr à ce jour de connaître l'explication de ce phénomène. Une explication pourrait être que, quand deux planètes migrent, elles le font à des vitesses différentes, et doivent alors forcément se perturber ou se rencontrer. Cette interaction se traduit par une augmentation des excentricités, voire par l'éjection d'une des deux planètes.


Exercice : Excentricités des orbites d'exoplanète

exerciceOrbites

Difficulté :   

Question 1)

Le rayon du Soleil est de 700 000 km. Est-ce qu'une planète tournant autour d'une étoile de type solaire et dont le demi grand-axe, a, est de 0,01 UA peut avoir une excentricité, e de 0,55 ? Pourquoi ? On rappelle que unité(1;UA)=unité(1,5*10^8;km)


Inclinaison des orbites d'exoplanètes

Inclinaison des orbites

Dans plusieurs systèmes planétaires, les planètes orbitent dans un même plan, comme c'est le cas dans le système solaire. Dans certains autres systèmes, les orbites des planètes sont inclinées les unes par rapport aux autres.

Les orbites de la plupart des planètes sont dans un plan perpendiculaire à l'axe de rotation de l'étoile. C'est la conséquence directe du processus de formation. Quand l'étoile se forme, le disque circumstellaire qui l'accompagne est perpendiculaire à son axe de rotation. Si les planètes se forment dans ce disque sans autre perturbation, elles vont garder une orbite perpendiculaire à l'axe de l'étoile.

La découverte de plusieurs planètes avec des orbites inclinées par rapport à l'axe de rotation de l'étoile, voire même sont rétrogrades, montre que les processus de formation ont parfois été plus agités.

Les configurations orbitales des exoplanètes sont donc très variées et nécessitent de diversifier les modèles de formation et d'évolution des systèmes planétaires.


Composition des planètes et des étoiles hôtes

Masse, composition et densité

Actuellement, à peu près la moitié des exoplanètes découvertes sont plus massives que 10 fois la masse de la Terre. Cependant, les planètes les plus massives sont évidemment les plus faciles à détecter. Avec l'augmentation de la sensibilité des instruments, il semble que les petites planètes sont beaucoup plus nombreuses que les grosses.

Plusieurs planètes rocheuses ont été découvertes. Ainsi COROT-7b a une densité largement supérieure à celle de la Terre et pourrait donc avoir un noyau métallique comme Mercure. A l'inverse, on a trouvé, pour plusieurs planètes, des rayons élevés qui se traduisent par des densités étonnamment basses que l'on ne sait pas encore expliquer.

La méthode des transits permet de séparer la lumière de l'étoile+planète de la lumière de l'étoile seule, obtenue quand la planète est derrière l'étoile. En faisant la différence entre ces deux flux, on obtient la lumière de la planète qui peut être étudiée en spectroscopie. C'est ainsi qu'on a trouvé de l'hydrogène, de l'oxygène, du sodium, de la vapeur d'eau et du dioxyde de carbone dans diverses planètes.

Mission EChO
transits.png
La mission de l'ESA EChO a pour projet l'étude de l'atmosphère des exoplanètes.
Crédit : ESA

Métallicité de l'étoile parente

Une observation intéressante est que les étoiles pour lesquelles on a trouvé une ou des planètes géantes, sont plus riches en éléments lourds (carbone, oxygène, fer, ...) que la moyenne des étoiles. Par contre les planètes plus petites ne semblent pas montrer de préférence pour les étoiles métalliques. On hésite encore sur l'explication à donner à cette corrélation. Elle peut être due soit au fait que l'étoile et son cortège planétaire sont issus d'un nuage moléculaire riche en éléments lourds, soit au fait que l'étoile a été enrichie en éléments lourds par la chute de planètes.


Réponses aux exercices

pages_resultats-observations/exercice-orbite-exoplanete.html

Exercice 'Orbites'