La première fois que l'on observe avec un télescope est en général un moment qui marque, quelque soit l'objet que l'on observe ou les moyens d'observation que l'on utilise, amateur ou professionnel.
Passé ce premier moment d'emerveillement, il faut se rappeler que l'astronomie est une science, la science de l'observation des astres. Et qu'en tant que telle, son but est de comprendre les principes physiques des objets que l'on observe et leurs propriétés.
Pour atteindre cet objectif, il faut que l'observation soit fidèle aux propriétés de l'objet que l'on étudie. Car l'observation c'est le premier maillon de la démarche scientifique, celle ci consiste à :
Observer, émettre des hypothèses sur les phénomènes que l'on observe
Les intégrer dans un cadre théorique, utiliser ce cadre théorique pour émettre des prédictions que l'on pourra confronter à l'expérimentation et à l'observation,
On voit donc que si l'observation de départ n'est pas fidèle à l'objet que l'on observe, tout le cadre logique de la démarche scientifique s'écroule.
Construire un protocole d'observation est donc une tâche complexe et importante, particulièrement difficile lorsque l'on observe des objets aussi faibles et lointains que des étoiles ou des galaxies dans l'Univers distant.
Pendant longtemps les astronomes ont utilisé des plaques photographiques pour enregistrer leurs observations et effectuer leurs mesures une fois de retour au laboratoire. Mais depuis une vingtaine d'années ces plaques photographiques ont laissé la place aux détecteurs CCD. Ces détecteurs sont trés similaires aux détecteurs que l'on peut trouver dans les appareils photo numériques, par exemple.
Ces détecteurs sont constitués de petits pixels faits de matériaux semi-conducteurs comme le silicium dont le rôle est de convertir l'intensité lumineuse en courant électrique.
Ce courant électrique est ensuite converti en une suite de 0 et de 1 que les ordinateurs savent lire et décrypter. Ce sont ces 0 et ces 1 que l'on trouve derrière les formats d'images tel que le bmp ou le jpeg ou le fits par exemple. Selon la façon dont ces 0 et ces 1 sont utilisés pour coder l'information.
On construit aujourd'hui des détecteurs CCD de plus en plus performants, malgré tout, ce sont principalement leurs défauts que l'on va chercher à mesurer et corriger dans le processus de la réduction de données.
Pour rendre tout cela plus concret, nous allons suivre les différentes étapes de la réduction de données à partir d'un exemple d'observations réalisées à l'Observatoire de Haute Provence.
Nous allons nous pencher sur des observations de la nébuleuse planétaire de la Lyre, appelée aussi Messier 57 ou M57. Le point blanc, au centre, est une naine blanche, c'est a dire les restes d'une étoile arrivée en fin de vie. Elle a alors expulsé ses couches de gaz externes, que l'on observe aujourd'hui sous la forme d'un anneau. La diamètre de cet anneau de gaz est de 2.4 a.l, soit environ 23 mille millards de km. Sur le ciel, cet anneau s'etend sur 6 minutes d'arc c'est à dire a peu près 1/5eme du diamètre de la pleine lune.
La magnitude apparente apparente de cette nébuleuse est environ 10 en bande V, c'est a dire dans le vert. Elle n'est pas visible a l'oeil nu mais un télescope de petit diamètre comme celui de 80 cm a l'observatoire de Haute Provence suffit pour bien l'observer.
M57 a été observée dans trois bandes qui correspondent a trois couleurs différentes: bleu (en bande B), vert (en bande V) et rouge (en bande R).
Observer un objet dans plusieurs filtres permet de sonder différents constituants et de comparer leurs distributions. Mais auparavant, il nous faut mesurer et corriger les défauts du détecteur placé derrière le télescope de 80 cm de l'OHP. Celui-ci, comme tous les CCD, a trois défauts principaux.