Evolution

Auteur: B. Mosser

Introduction

Les sections précédentes ont décrit les processus physiques à l'oeuvre au sein des étoiles au cours de leur évolution. Celle-ci présente des résultats issus de modélisations numériques détaillées, et s'intéresse à l'évolution des étoiles de différentes masses dans le diagramme HR.

isochrones.png
Isochrones d'évolution stellaire.
Crédit : ASM

Evolution stellaire dans le diagramme HR


Apprendre

Les âges dans le diagramme HR

Lorsqu'une étoile naît à partir de l'effondrement gravitationnel d'un nuage de gaz et que les premières réactions nucléaires démarrent en son coeur et fournissent son processus de rayonnement, elle se retrouve très rapidement sur la séquence principale.

On décrit alors l'étoile comme un système en équilibre entre la gravitation (force d'attraction en direction du centre de l'étoile) et la pression du gaz et du rayonnement (qui pousse vers l'extérieur). Plus l'étoile est massive, plus elle est chaude et lumineuse (en haut à gauche du diagramme), et plus elle est petite, plus elle se trouve au contraire dans la partie basse, sur la droite du diagramme.

evolm0.png
Tracé d'évolution dans le diagramme HR, fonction de la masse stellaire.
Crédit : ASM

Evolution des étoiles de très faible masse

Pour des étoiles de masse inférieure à la moitié de la masse du Soleil, également appelées naines froides, il n'y a pas de fusion d'éléments plus lourds après la fusion de l'hydrogène. La durée de vie de ces étoiles sur la séquence principale est supérieure à l'âge actuel de l'Univers (environ 14 milliards d'années). Les modèles d'évolution stellaire prévoient que ces étoiles finissent en naines blanches d'hélium... mais il est encore trop tôt pour en observer.

Evolution des étoiles de masse intermédiaire

Entre 0,5 et 7 masses solaires, seuls l'hydrogène puis l'hélium vont pouvoir fusionner dans l'étoile. Sur la séquence principale, il y aura d'abord fusion de l'hydrogène dans le coeur. Puis l'hydrogène va fusionner dans une couche autour du coeur d'hélium. L'enveloppe de l'étoile se dilate et refroidit : l'étoile devient une géante rouge. La diminution de la température est suffisamment compensée par l'augmentation simultanée du rayon pour faire croître la luminosité. L'étoile monte dans le diagramme HR.

La fusion de l'hélium du coeur peut alors démarrer. L'étoile se recontracte. La fusion de l'hélium va alors produire du carbone et de l'oxygène d'abord dans le coeur. L'étoile redescend dans le diagramme HR. La fusion du carbone nécessite une température centrale d'environ 10^9 {\,\mathrm{K}}, non atteinte pour ces masses intermédiaires.

L'étoile finit en nébuleuse planétaire avec formation au centre d'une naine blanche de carbone et d'oxygène.

Evolution des étoiles les plus massives

À partir de la séquence principale, les éléments de plus en plus massifs fusionnent au coeur de l'étoile. Les éléments moins massifs continuent de fusionner en couches, enrichissant les couches plus profondes en produits de fusion. De forts vents stellaires sont observés.

Lorsque le noyau de fer dépasse la masse limite de Chandrasekhar, il s'effondre. Le vide créé aspire la matière de l'étoile qui rebondit et crée une onde de choc qui expulse violemment toutes les couches externes : c'est une supernova de type II. Le résidu du coeur de fer effondré forme une étoile à neutrons ou un trou noir selon sa masse.

Durée de l'évolution

La rapidité de l'évolution et des différentes phases de fusion nucléaire dépend essentiellement de sa masse et de sa composition chimique initiale. Ainsi une étoile de 1 masse solaire passera environ 10 milliards d'années sur la séquence principale, contre 20 à 30 milliards d'années pour une étoile d'un dixième de masse solaire, et seulement quelques millions d'années pour une étoile très massive de 50 masses solaires.

Masse initiale (en unité de masse solaire)Fusion EvolutionStade final
<0.08 D Naine brune, et non étoileNaine brune
0.08 - 0.5H Evolution très lente, sur une durée de vie supérieure à l'âge de l'UniversNaine blanche d'hélium (?)
0.5 - 7 H, puis HeFin en nébuleuse planétaireNaine blanche C, O
8 - 25 H, puis He, puis C et OFusion de H sur la séquence principale puis fusion He, C, O... lors de la phase de supergéante rouge. Structure en couche avec un coeur de fer entouré d'éléments de plus en plus légers en train de fusionnerSupernova de type II, puis étoile à neutrons
25+ idem idem Supernova de type II, puis trou noir

Récapitulatif de l'évolution stellaire.


Simuler

application.png

Tracé d'évolution

L'appliquette ci-jointe décrit les étapes de l'évolution d'une étoile en fonction de sa masse : séquence principale de l'âge 0 à la contraction du noyau d'hélium, stade géante rouge...

Le film de l'évolution

Le trajet d'évolution d'une étoile dans le diagramme HR dépend intimement de sa masse. Plusieurs cas sont représentés, pour diverses masses (unité = masse solaire) : 0.8, 1.5, 2, 4, 7, 25 M_\odot.

L'échelle de temps, adaptée à chaque cas en fonction de la rapidité de l'évolution, n'est pas linéaire. Les étoiles, sauf les plus massives, vont longtemps stationner sur la séquence principale, puis plus rapidement évoluer vers les stades ultimes lorsque la réserve d'énergie s'épuise.

evol08.gif
Evolution d'une étoile de 0.8 masse solaire dans le diagramme HR. Son évolution est très lente, et elle quitte à peine la séquence principale... à un âge supérieur à celui de l'Univers.
Crédit : ASM
evol1d.gif
Evolution d'une étoile de 1.5 masse solaire dans le diagramme HR, qui évolue vers le stade de géante rouge (puis nébuleuse planétaire, non représentée sur l'animation)
Crédit : ASM
evol2.gif
Evolution d'une étoile de 2 masses solaires dans le diagramme HR. L'évolution est rapide (durée de vie sur la séquence principale de l'ordre du milliard d'années). En fin de vie, l'étoile brûle de l'hélium.
Crédit : ASM
evol4.gif
Evolution d'une étoile de 4 masses solaires dans le diagramme HR. L'évolution est très rapide (durée de vie sur la séquence principale de l'ordre de 150 millions d'années). En fin de vie, l'étoile brûle de l'hélium.
Crédit : ASM
evol7.gif
Evolution d'une étoile de 7 masses solaires dans le diagramme HR. Evolution très rapide, et fin de vie comme supergéante brûlant de l'hélium.
Crédit : ASM
evol25.gif
Evolution d'une étoile de 25 masses solaires dans le diagramme HR. Evolution extrêmement rapide. L'étoile en fin de vie, supergéante rouge, fusionne tous les éléments jusqu'au fer.
Crédit : ASM

S'évaluer

exercicePopulation stellaire

Difficulté :    Temps : 15 min

champcorot_ira01.png
Histogrammes des températures effectives et du champ de gravité de surface (traduit par la valeur \log g (avec g en g cm^{-2}) d'étoiles observées par CoRoT.
Crédit : CoRoT/CNES

Le satellite CoRoT observe différents champs stellaires. Une modélisation des cibles conduit aux histogrammes de leur température effective et de leur champ de gravité de surface (traduit par la valeur \log g (avec g en cm s^{-2}).

Question 1)

Rappeler comment sont déterminées observationnellement les paramètres considérés.

[2 points]

Question 2)

Identifier les 2 populations stellaires qui dominent les observations.

[2 points]

Question 3)

On s'intéresse au pic principal de la distribution. Expliquer les raisons de la décroissance aux plus faibles et plus fortes températures.

[2 points]


Age des amas


Observer

Isochrones
isochrones.png
Diagramme HR représentatif d'un amas d'étoiles, en fonction de son âge (donné via le logarithme de l'âge exprimé en années).
Crédit : ASM
M67
m67.jpg
Amas ouvert M67, d'âge avancé.
Crédit : Catalogue NGC
NGC2363
ngc2362.jpg
Amas ouvert NGC 2362, entourant l'étoile tau de la constellation du Grand Chien.
Crédit : Catalogue NGC
hramas.png
Evolution de différents amas. M67, âgé, ne comprend plus aucune étoile bleue ; NGC2363 est en revanche un amas très jeune, avec de nombreuses étoiles massives et brillantes.
Crédit : Université de Lyon

Evolution

Les étoiles d'un amas, nées simultanément, évoluent différentiellement selon leur masse. Les courbes isochrones (de même âge) le montrent clairement : les plus massives atteignent très rapidement leur stade ultime, et donc quittent rapidement la séquence principale, quand les moins massives y restent sur une durée plus longue que l'âge actuel de l'Univers. Un amas âgé ne contiendra donc pas d'étoiles jeunes, contrairement à un amas jeune.

Amas plus ou moins jeunes

L'allure du diagramme HR d'un amas renseigne donc sur son âge. L'absence d'étoiles bleues et chaudes signe un âge avancé.


Apprendre

objectifsObjectifs

Les étoiles d'un amas ayant le même âge. Par ailleurs elles évoluent en fonction de leur masse. L'étude de la population des amas permet la détermination de leur âge.

Evolution

Au cours de leur évolution, les amas se dépeuplent des étoiles les plus massives. Il s'ensuit que le diagramme HR d'un amas âgé montre une séquence principale uniquement peuplée d'étoiles froides, et de géantes rouges : plus un amas est âgé, plus il est dépeuplé en étoiles chaudes.


Simuler

Evolution

Les étoiles d'un amas, nées simultanément, évoluent différentiellement selon leur masse. Les plus massives atteignent très rapidement leur stade ultime, quand les moins massives ne quittent pas la séquence principale.

isochrones.gif
Diagramme HR représentatif d'un amas, en fonction de son âge (donné via le logarithme de l'âge exprimée en années).
Crédit : ASM

Mesure de l'âge d'un amas par ajustement de séquence principal

Voir les simulations proposées à la page.


Réponses aux exercices

pages_evolutionstellaire/evolution-stellaire-hr-sevaluer.html

Exercice 'Population stellaire'