Visibilité des franges


Observer

raiena0.png
Le filtre sélectionne ici 2 raies (les raies modélisées du doublet du sodium). La variable spectrale est donnée en nombre d'onde {\,\mathrm{cm}}^{-1}.
Crédit : ASM

Au fil de l'interférogramme

Un interférogramme présente une modulation, de période égale à la longueur d'onde moyenne sélectionnée par le filtre.

raiena003.png
Interférogramme du spectre synthétique du sodium. Le domaine spectral étant large, le contraste décroît avec la longueur d'onde. Les oscillations ont pour période moyenne 589.3 nm.
Crédit : ASM

L'interférogramme présente à plus grande différence de marche des motifs liés à la nature du signal. A très grande différence de marche, il perd tout contraste.

raiena03.png
Interférogramme du spectre synthétique du sodium. Les motifs sont dus au doublet du sodium. Leur effacement à grande différence de marche provient de la non-cohérence du signal spectral : les raies du sodium présentent une certaine largeur, càd une longueur de cohérence limitée. A l'échelle de cet interférogramme, la modulation présente lorsque l'on zoome sur une portion de l'interférogramme n'est plus visible ; on visualise ici essentiellement l'enveloppe du signal, qui représente les variations du contraste.
Crédit : ASM
raiena3.png
Interférogramme du spectre synthétique du sodium. Les franges perdent leur contraste à grande différence de marche.
Crédit : ASM

Apprendre

objectifsObjectifs

Introduire la notion de contraste, qui rend compte d'une modulation amoindrie dans l'interférogramme d'une raie réelle, qui n'est pas strictement monochromatique.

Le contraste représente globalement l'allure de l'interférogramme, avec des trains de franges plus ou moins contrastés (chaque frange n'étant localement qu'essentiellement un bout de sinusoïde de période égale à la longueur d'onde moyenne sélectionnée par le filtre d'entrée.

Monochromaticité

Un laser présente une bonne réalisation pratique d'une raie monochromatique. Sa longueur de cohérence peut être tellement grande que la réalisation de son interférogramme conduit effectivement à un signal également modulé à toute différence de marche :

I(\delta) \ = \ I_0 \ (1+\cos 2\pi \sigma \delta)

Mais une source réelle ne présente pas un telle cohérence (autrement dit, elle est moins monochromatique), et cela modifie les propriétés de l'interférogramme, qui apparaît moins contrasté.

Définition du contraste

definitionDéfinition

Le contraste \mathcal{C} des franges est le rapport entre l'amplitude de modulation de la frange à l'énergie totale I_0 collectée dans le filtre.

Le contraste se mesure localement dans l'interférogramme par :

{ \mathcal{C}} \ = \ {I _{\mathrm{max}} - I _{\mathrm{min}}\over I _{\mathrm{max}} + I _{\mathrm{min}}}

Dans l'interférogramme d'une source avec une seule raie plus ou moins large, il intervient comme :

I (\delta) \ = \ I_0 \ \left[ 1 + { \mathcal{C}} (\delta) \cos(2\pi\sigma\delta)\right]

Visibilité des franges d'interférence

La visibilité des franges, ou leur contraste, dépend de la largeur des raies du spectre. Une approche simple est proposée en exercice.

Des animations montrent comment la visibilité évolue avec la largeur des raies, mais aussi avec la largeur du filtre.


Simuler

Visibilité

La visibilité des franges dépend de la largeur spectrale des raies étudiées. Plus les raies sont larges, moins les franges sont visibles à grande différence de marche.

animvisilarg.gif
Simulation d'une raie en émission, et interférogramme associé. Lorsque la raie s'élargit, les motifs interférométriques à différence de marche élevée disparaissent.
Crédit : ASM

S'évaluer

exerciceVisibilité des franges

Difficulté : ☆☆☆   Temps : 45 min

On alimente un spectromètre par TF par un spectre avec une seule raie, non monochromatique, de largeur \Delta\sigma. On note I_\sigma l'intensité spectrale, et I_0 = \int _{\mathrm{raie}} I_\sigma {\mathrm{d}} \sigma l'intensité dans la raie. Pour simplifier les calculs, on ne s'intéresse pas à un profil réaliste, mais à un profil de raie en émission idéalisé par :

\begin{eqnarray*} I_\sigma (\sigma) =& \displaystyle{I_0\over \Delta \sigma} \mathrm{ \ si\ } |\sigma-\sigma_0| \le \Delta\sigma/2\\ I_\sigma (\sigma) =& 0 \mathrm{ \ si\ } |\sigma-\sigma_0| > \Delta\sigma/2 \end{eqnarray*}

Question 1)

Justifier le fait que l'intensité totale I(\delta) enregistrée à la différence de marche \delta est la somme de toutes les intensités spectrales reçues.

[3 points]

Question 2)

Mener le calcul de l'interférogramme.

[3 points]

Question 3)

Montrer la relation :

I( \delta) \ = \ I_0\ \left(1 + { \mathcal{V}} \cos 2\pi\sigma_0 \delta \right)

et exprimer la fonction de visibilité des franges \mathcal{V} en fonction de \delta et \Delta\sigma.

[1 points]

Question 4)

Représenter schématiquement la fonction { \mathcal{V}} ( \delta ). Déterminer la première valeur \delta_{\Delta\sigma} qui annule la fonction de visibilité.

[2 points]