La troisième loi de Képler |
Ayant vu comment les astronomes mesurent les distances aux astres lointains -mais pas trop-, comment va-t-on concrètement mesurer le système solaire tout entier ? Le Soleil est bien trop loin pour qu'une mesure de parallaxe nous en donne sa distance. Les lois de Kepler vont nous donner les rapports des distances des planètes au Soleil et il suffira de connaître une seule distance entre les planètes pour les connaître toutes.
La première loi de Kepler énonce que les orbites des planètes autour du Soleil sont des ellipses.
La deuxième loi de Kepler est la loi des aires. Plus simplement, elle indique les planètes vont plus vite sur leur orbite quand elles sont près du Soleil. Nous utiliserons cette loi pour l'analyse des observations de passage qui nécessite de connaître la vitesse angulaire apparente de Vénus sur le disque solaire.
La troisième loi de Kepler nous fournit les rapports entre les distances au Soleil de toutes les planètes et il suffit ainsi de connaître une seule distance dans le système solaire pour connaître toutes les autres. Elle s'énonce ainsi :
le rapport a3/T2 est constant pour toutes les planètes du système solaire où a est le demi grand axe de l'orbite et T la période de révolution autour du Soleil. La figure ci-dessous montre ce qui se passe si les orbites sont des cercles, connaissant la distance Δ et les périodes t1 et t2.
La première loi de Kepler énonce le fait que les orbites sont des ellipses et on ne pourra donc pas assimiler les distances Soleil-Terre et Soleil-Vénus aux demi-grands axes aT et aV des orbites de la Terre et de Vénus. On passe du demi grand axe "a" à la distance Soleil-planète (rayon vecteur) "rP" par la formule :
rP = a (1 - e cos E) où e est l'excentricité de l'ellipse et E caractérise l'emplacement de la planète sur son orbite elliptique (E est appelé "anomalie excentrique").