Dans le chapitre précédent, nous avons vu les réflexions et la réfraction sur des dioptres et des miroirs plans. Mais il suffit de regarder n'importe quel instrument d'optique pour voir qu'ils ne sont pas uniquement composés de ce type d'optiques. Les notions précédemment abordées ne sont donc pas suffisantes pour décrire ces instruments.
Prenons un verre de lunette. Il n'est pas plan. Sa surface est courbe. Les objets à travers y paraissent déformés. Idem avec une loupe. Ce qu'on y voit à travers nous apparaît tantôt plus gros, tantôt flou, ou parfois même plus petit et renversé. Les rétroviseurs extérieurs d'une voiture comportent en général une partie courbe sur leur extrémité. La voiture qui nous suit y apparaît plus éloignée que dans le rétroviseur intérieur. Tous ces objets du quotidien, ainsi que d'autres instruments comme les appareils photos, les télescopes ou les microscopes, sont en fait constitués de lentilles (des dioptres dont la surface est courbe) ou des miroirs aux formes sphériques, paraboliques ou même hyperboliques.
Nous avons commencé à voir, au chapitre précédent, les phénomènes mis en jeux dans ces systèmes. Nous n'allons pas nous arrêter en si bon chemin. Dans les chapitres qui suivent, nous allons étudier ces nouveaux éléments, en commençant par les lentilles minces. Nous aborderons aussi la formation des images en optique. À partir de là, nous pourrons commencer à étudier des systèmes optiques plus complexe comme les lunettes astronomiques, les appareils photos, l'oeil...
Qu'est-ce qu'on appelle une lentille ? Par lentille, j'entends bien sûr une lentille en optique, et non l'une des espèces de fabacées. Prenons en deux exemples. Dans une main, une loupe, dans l'autre, une paire de lunettes pour myope. Elles sont toutes les deux en verre, transparentes, et délimitées par au moins une surface courbe, parfois deux.
Nous appellerons désormais une lentille sphérique une portion de MTHI (ici notre verre), limité par 2 dioptres dont l'un au moins est sphérique. Remarquons tout de suite qu'une lentille n'est par forcément sphérique. Il en existe, pour ne citer qu'elles, des cylindriques. Nous nous limiterons par contre, dans ce chapitre, aux lentilles sphériques.
Pour simplifier encore notre étude, nous nous limiterons au cas des lentilles dites minces. C'est-à-dire dont l'épaisseur est faible devant le rayon de courbure des dioptres.
La première conséquence, illustrée ci-dessous, est que tout rayon lumineux passant par le centre d'une lentille, ne sera pas dévié. En effet, c'est comme s'il traversait une lame de verre d'épaisseur nulle.
Réalisons une petite expérience. Mettons une loupe au Soleil. La lumière est focalisée en un point. Très amusant pour mettre le feu à une feuille de papier. Mais si on essaie avec le verre de lunette... On a beau déplacer celui-ci, aucune tache de lumière ne se forme. Les rayons du Soleil ne sont pas focalisés par celui-ci. Aurions-nous à faire à deux types de lentilles ?
Une deuxième expérience nous le confirme. Les lentilles de type loupe font converger la lumière. Les lentilles de type verre de lunettes pour la myopie font diverger les rayons lumineux.
Dans le cas de la loupe, les rayons arrivant parallèles en amont sont focalisés en sortie de la lentille. Ce premier type de lentille est appelé lentille convergente.
Dans le cas du verre de lunette, les rayons s'écartent les uns des autres après passage par la lentille. Ils divergent. Ces lentilles sont appelées lentilles divergentes.
Si on regarde une coupe de ces lentilles, on voit d'où vient cette différence. On constate que les lentilles convergentes possèdent des bords plus fins que le centre. Pour les lentilles divergentes, c'est l'inverse, les bords sont plus épais que le centre.
Lorsqu'un rayon arrivant au-dessus de l'axe de symétrie de la lentille (que nous appellerons axe optique) atteint la surface d'une lentille convergente, les lois de la réfraction nous disent qu'il est dévié vers l'axe optique. Le rayon se rapproche de celui-ci. Il converge.
Dans le cas d'un lentille divergente, le rayon incident est quant à lui dévié en s'écartant de l'axe optique.
Prenons une lentille convergente. Utilisons la d'abord comme une loupe. En observant un objet (un timbre, par exemple) dans la direction perpendiculaire à lui, on peut obtenir, en plaçant judicieusement la loupe, une image nette et agrandie du timbre. Nous nous trouvons donc dans des conditions de stigmatisme et d'aplanétisme au moins approché. Si on s'amuse à déplacer un écran derrière notre lentille pour obtenir une image de notre timbre, c'est peine perdue. Nous avons donc une image virtuelle, l'objet étant tout ce qu'il y a de plus réel.
Remplaçons cette fois le timbre par un objet rétroéclairé (les opticiens aiment bien utiliser un F éclairé par l'arrière). Plaçons un écran suffisamment loin de lui. Si on déplace la lentille, on trouve deux positions où l'on obtient une image inversée du F, tantôt plus grande, tantôt plus petite. On a donc cette fois-ci une image réelle. Tiens, une lentille convergente peut produire les deux types d'images à partir d'un objet réel. Nous allons détailler cela dans la suite.
Considérons un faisceau parallèle (objet à l'infini) et parallèle à l'axe optique (cas du Soleil à travers une loupe) et observons ce qui se passe. Dans le cas d'une lentille convergente, tous les rayons convergent en un point. Nous appellerons ce point foyer principal image. Ce point est l'image réelle d'un point situé à l'infini. Dans le cas d'une lentille divergente, tous les rayons divergent. Cependant, ils semblent tous provenir d'un point situé en amont de la lentille (il suffit de les prolonger). Nous appellerons également ce point foyer principal image. Il est l'image virtuelle d'un point situé à l'infini.
Le foyer principal image est le point image d'un point objet situé à l'infini sur l'axe optique.
Par retour inverse de la lumière, si on place une source ponctuelle au foyer image, les rayons ressortiront parallèles. La lentille étant symétrique, on peut la retourner. Il existe donc un point où si l'on place une source ponctuelle, les rayons issus de ce point seront parallèles entre eux et parallèles à l'axe optique. Ce point est appelé foyer principal objet. Il est le symétrique par rapport à la lentille de foyer principal image. Dans le cas d'une lentille convergente, ce point est le point objet réel donnant une image à l'infini. Dans le cas d'une lentille divergente, ce point est le point objet virtuel donnant une image à l'infini.
Le foyer principal objet est l'antécédent d'un point image situé à l'infini sur l'axe optique.
On appelle distance focale image la distance séparant le centre de la lentille au foyer image. On la note . C'est une quantité algébrique, c'est-à-dire qu'on la compte positivement dans le sens de propagation de la lumière. est positif dans le cas d'une lentille convergente et négatif dans le cas d'une divergente.
De la même manière, on définit la distance focale objet comme étant la distance séparant le centre de la lentille et le foyer principal objet. Les deux foyers et étant symétriques par rapport au centre , on obtient .
On définit la vergence comme étant l'inverse de la distance focale image.
Elle s'exprime en ou encore en dioptrie (noté ). Par exemple, une lentille divergente de distance focale (correction pour une myopie sévère) possède une vergence de . C'est le nombre annoncé dans les ordonnances pour les lunettes.
Nous avons commencé à parler de distance négative et de grandeurs algébriques. Voici un petit aparté pour détailler ces notions.
Dans la rue, quelqu'un vous demande où se situe la boulangerie la plus proche. Vous lui indiquez qu'elle est à 100 m. Oui, mais cette indication ne précise pas si elle est à 100 m devant ou derrière. Certes, en général, c'est implicite, ou accompagné d'un geste pour préciser la direction à emprunter. Cependant, en physique, il y a rarement quelqu'un pour nous indiquer le sens. Comment s'en sortir ? Si la boulangerie se situe devant nous, nous dirons effectivement qu'elle est à 100 m. Et si elle est derrière, qu'elle est à -100 m. C'est ce qu'on appelle des grandeurs algébriques. Il reste cependant encore un problème à régler. Si on se retourne, ce qui était devant devient derrière et inversement. Il faut en fait choisir un sens pour orienter nos mesures. Reprenons notre rue. Si elle est à sens unique, le plus simple est de choisir le sens de circulation des voitures pour orienter notre axe. Les distances dans le sens de circulation seront positives, et celle dans le sens opposé seront négatives.
En optique, ce sera pareil. Sauf que de circulation il n'est pas question. Mais nous prendrons pour orienter notre axe optique le sens de parcours des photons. Les distances orientées dans le même sens que l'axe optique seront comptées positivement (comme la distance focale image pour une lentille convergente), et celles dans le sens opposé seront comptées négativement (comme la distance focale objet pour une lentille convergente).
Considérons un faisceau parallèle mais arrivant avec une incidence non nulle par rapport à l'axe optique. Dans le cas de la lentille convergente, ils convergent en point appartenant nécessairement à l'axe car tout rayon passant par le centre de la lentille n'est pas dévié. On s'aperçoit que ce point, que nous appellerons foyer secondaire image, est à la verticale du foyer principal image.
Remarque : En fait, cette dernière remarque est vraie dans l'approximation de Gauss, qui garantit un aplanétisme approché.
Si l'inclinaison du faisceau varie, ce point (le foyer secondaire) parcourt ce que l'on nomme le plan focal de la lentille.
Pour une lentille divergente, on retrouve le même phénomène, sauf que les foyers secondaires images sont virtuels et situés en amont de la lentille. Comme précédemment, nous allons pouvoir définir un foyer secondaire objet, comme étant l'antécédent d'un point image situé à l'infini, en dehors de l'axe optique. L'ensemble des foyers secondaires objets constitueront le plan focal objet.
Dans les conditions de Gauss, les plans focaux sont perpendiculaires à l'axe optique. Dans la vraie vie, ce sont des surfaces non planes. Les plaques photos utilisées au foyer d'un télescope de Schmidt étaient sphériques.
Munis de ces outils, nous allons pouvoir définir quelques propriétés sur les rayons lumineux traversant des lentilles. Elles vont nous permettre d'aborder, au paragraphe suivant, la construction des images.
On dispose d'un objet en amont de la lentille et du foyer objet. On cherche à tracer son image à travers la lentille.
Approchons notre objet de la lentille de façon à placer l'objet entre le foyer principal objet et le centre de la lentille. On reproduit la construction précédente. Cette fois-ci l'image est en amont de la lentille. Elle est virtuelle. Elle est dans le même sens que l'objet. Elle est également plus grande. On retrouve le cas de la loupe. Que nous donne le tracé cette fois-ci ?
Continuons à faire avancer l'objet de telle manière qu'il passe de l'autre côté de la lentille. Il est dorénavant virtuel. Comment arriver à un tel résultat. Facile. En utilisant une deuxième lentille. On place un objet réel devant cette seconde lentille. Elle produit une image réelle. Plaçons la première lentille entre la seconde et l'image, et le tour est joué. Que nous donne le tracé cette fois-ci ?
Les cas traités précédemment concernaient des objets à distance finie. En astronomie, les objets sont situés à l'infini. Dans ce paragraphe, nous allons placer l'objet à l'infini. Il possédera un diamètre apparent .
Remarquons tout de suite que la taille de l'image (sur un détecteur CCD par exemple) est tout simplement le produit du diamètre apparent (en radians) par la focale de l'instrument.
Changeons de lentille pour passer aux lentilles divergentes. La différence par rapport aux cas précédents est que les positions des foyers objets et images sont inversées. Recommençons la procédure précédente.
Bon, je pense que vous avez compris le principe. Je vous laisse les deux suivants en exercice.
Ne vous inquiétez pas, on ne va pas être obligé de systématiquement tracer toutes nos images dès qu'on voudra obtenir la moindre position ou taille. Il existe des relations simples, nommées relations de conjugaison, permettant d'accéder à toutes ces données, connaissant uniquement la distance focale de la lentille.
Nous allons les démontrer à partir des constructions précédentes.
Nous avons vu que la taille de l'image n'est pas nécessairement la même que celle de l'objet. Et celle-ci varie en fonction de la distance de l'objet et de la distance focale.
Nous allons appeler grandissement le rapport des tailles de l'objet et de l'image.
En appliquant le théorème de Thalès, on trouve immédiatement que :
Connaissant la distance de l'objet et de l'image, il est donc possible de calculer la taille de l'image.
Si le grandissement est positif, alors l'objet et l'image sont dans le même sens ; s'il est négatif, l'image est inversée par rapport à l'objet.
Si le grandissement est supérieur à 1, ou inférieur à -1, alors l'image est plus grande que l'objet. S'il est compris entre -1 et 1, l'image sera plus petite.
Difficulté : ☆ Temps : 5 min
Voici 3 constructions géométriques :
Calculez le grandissement dans les trois cas.
Et si on ne connaît pas la position de l'image ? Nous allons utiliser les foyers. En appliquant cette fois-ci le théorème de Thalès deux fois de chaque côté de la lentille, on obtient :
Et voilà, connaissant la distance focale et la distance de l'objet, on peut calculer le grandissement.
Remarquons qu'à partir de ces deux formules, on va pouvoir calculer la distance de l'image.
Nous venons d'établir la relation de conjugaison de Newton. Elle est aussi appelée relation de conjugaison avec origine au foyer, car les distances de l'objet et de l'image sont comptées à partir des foyers principaux.
Difficulté : ☆ Temps : 5 min
On reprend les mêmes et on recommence !
Sachant que la distance focale est de 4 cm en valeur absolue dans les 3 cas, retrouvez les valeurs de grandissement précédemment établies.
On considère une lentille convergente de vergence . On place un objet à une distance en amont du centre de la lentille.
Calculez la position de l'image.
Est-elle réelle ou virtuelle ?
Calculez sa taille.
Nous pouvons également obtenir une relation similaire, avec origine au centre de la lentille cette fois-ci. En partant de la formule du grandissement :
On obtient ainsi la relation de conjugaison de Descartes :
Remarque, on note parfois les distances et respectivement et .
Difficulté : ☆☆ Temps : 10 min
Considérons une paire de lunettes correctrices pour la myopie. L'ordonnance indique une vergence de .
Quelle est la distance focale image de la paire de lunettes ? Quelle est le type de lentilles utilisées ?
Muni de cette paire de lunettes, je lis un livre situé à 30 cm de mon visage. Quelle est la distance de l'image de cet ouvrage à travers les lunettes ?
Difficulté : ☆☆☆ Temps : 20 min
On dispose d'un objet, d'un écran, et d'une lentille convergente de distance focale image .
Quelle doit être la distance minimale entre l'objet et l'écran pour pouvoir y former son image ?
Nous venons donc de voir qu'il existe deux types de lentilles minces : des lentilles convergentes, une loupe par exemple, qui ont la propriété de faire converger un faisceau lumineux ; des lentilles divergentes, comme des verres correcteurs de myopie, qui font diverger un faisceau lumineux.
Nous avons défini trois points particuliers d'une lentille : le centre , centre de symétrie de celle-ci, par lequel aucun rayon lumineux n'est dévié ; le foyer principal image, image d'un point situé à l'infini sur l'axe optique ; le foyer principal objet, antécédent d'un point situé à l'infini sur l'axe optique. Ces points sont appelés éléments cardinaux de la lentille.
Les distances entre ces points sont appelées distances focales. Ce sont des données de la lentille. Elles caractérisent la vergence de la lentille, c'est-à-dire son pouvoir de dévier les rayons lumineux.
À l'aide de trois rayons, il nous est désormais possible de tracer l'image d'un objet à travers une lentille. Le rayon lumineux passant par le centre d'une lentille n'est pas dévié, celui arrivant parallèle à l'axe optique ressort en croisant le foyer principal image, et celui passant par le foyer principal objet ressortira de la lentille parallèle à l'axe optique.
Enfin, nous avons quelques relations qui nous permettront de calculer des tailles d'images, les distances où elles se forment et pourquoi pas des champs de vue et des grossissements. Ce sera pour bientôt.
pages_lmc/lm-ov-ir.html
pages_lmd/lmd-or-iv.html
pages_lmd/lmd-ov-ir.html
pages_lentilles-minces/lm-grandissement-exo.html
Prenez les mesures sur les dessins.
pages_lentilles-minces/lm-grd-exo2.html
Pour ceux qui aurait la flemme de mesurer les distances sur les figures,
pages_lentilles-minces/lm-grd-exo2.html
Calculez la distance focale image à partir de la vergence. Calculez la distance en appliquant la relation de Chasles. En déduire la position de l'image en appliquant la formule de Newton.
pages_lentilles-minces/lm-rc-exos.html
Calculez en fonction de et . Déduisez-en une condition sur pour que l'image existe.