Pourquoi a-t-on une circulation?

Auteurs: Thomas Navarro, Arianna Piccialli

Bilan radiatif au sommet de l'atmosphère

On a vu que la notion de température d'équilibre ou effective requiert plusieurs hypothèses. L'une d'entre elles est que l'énergie rayonnée par unité de surface de la planète vers l'espace est homogène, c'est-à-dire qu'elle est la même en tous points, depuis l'équateur jusqu'aux pôles.

Or, la figure 1 nous donne un exemple pour la Terre qui montre la limite de cette hypothèse. On peut y voir que l'énergie absorbée par la Terre provenant du Soleil (et donc principalement dans la bande visible du spectre lumineux) dépend de la latitude, comme attendu d'après la figure 2. On y remarque surtout que l'énergie émise par la Terre vers l'espace, principalement de la bande infrarouge, dépend aussi de la latitude et est différente de la courbe d'énergie reçue. Ceci est un simple constat, issu d'observations, qu'il va s'agir d'interpréter.

En comparant les valeurs des puissances émises et reçues dans la figure 1, on constate qu'il y a une perte d'énergie vers les pôles et un gain d'énergie vers l'équateur. En vertu du principe de conservation de l'énergie, et en supposant que la planète est dans un état stationnaire, on ne peut que conclure que de l'énergie est transférée de l'équateur vers les pôles. Ce transfert d'énergie est causé par le mouvement global de l'atmosphère de la planète (et des océans s'ils sont présents).

On verra plus loin dans le cours que cette différence en énergie est également le moteur de la circulation atmosphérique.

objectifsObjectif

Plus généralement, ce cours sur la dynamique atmosphérique va de pair avec celui sur la structure thermique des atmosphères. On y aborde ici les mouvements fluides à grande échelle, tandis que le cours sur la structure thermique aborde l'équilibre radiatif et les mouvements convectifs verticaux uniquement.

Bilan radiatif de la Terre
rad_balance_ERBE_1987.jpg
Figure 1 : Bilan d'énergie de la Terre sur une année (1987). Puissance reçue par la Terre depuis le Soleil dans le visible en haut de l'atmosphère en bleu, et émise par la Terre vers l'espace dans l'infrarouge (en rouge).
Crédit : Pidwirny, M. (2006). "Global Heat Balance: Introduction to Heat Fluxes". Fundamentals of Physical Geography, 2nd Edition. Date Viewed. http://www.physicalgeography.net/fundamentals/7j.html
Radiation solaire
Solar_radiation.png
Figure 2 : La radiation solaire arrive à des angles différents à la surface de la Terre selon la latitude. Pour une même quantité d'énergie émise par le soleil, la zone couverte est plus petite à l'équateur et s'agrandit aux pôles. Ainsi, la Terre reçoit plus d'énergie par unité de surface à l'équateur qu'aux pôles.
Crédit : Arianna Piccialli

La circulation de Hadley

introductionUn exemple historique

Les échanges d'énergie à l'échelle globale d'une planète sont fondamentaux pour comprendre la circulation à grande échelle. Historiquement, la première description et compréhension de ces mouvements a été faite sur Terre au 18ème siècle.

L'exemple le plus célèbre de la preuve d'une circulation atmosphérique à grande échelle provient de l'observation des vents permettant la navigation sur les océans terrestres. Les vents dominants soufflent d'Est en Ouest aux latitudes tropicales (environ 30°S à 30°N, et qu'on appelle alizé). Une explication satisfaisante de l'origine de ces vents fut donnée par George Hadley en 1735 : il existe une circulation à l'échelle de la planète qui transporte des masses d'air depuis l'équateur jusqu'aux tropiques en formant une cellule, qu'on appelle cellule de Hadley tel qu'on peut le voir sur la Figure 1.

L'origine des alizés est la suivante : quand une masse d'air tombe vers la surface aux tropiques, elle retourne à l'équateur. Ce faisant elle subit la force de Coriolis : elle est donc déviée vers sa droite dans l'hémisphère Nord, ou vers sa gauche dans l'hémisphère Sud, c'est-à dire vers l'Ouest dans les deux cas. Inversement, une masse d'air qui part de l'équateur vers les tropiques subira une déviation vers l'Est et formera un courant jet en altitude au niveau des tropiques et orienté vers l'Est.

L'origine des alizés est ainsi comprise, mais quid de l'origine de la cellule de Hadley en elle-même ? Elle provient de la différence d'énergie reçue par la Terre en fonction de la latitude. La hauteur d'échelle atmosphérique est plus grande à l'équateur (ou, autrement dit, l'air est plus dilaté), ce qui cause un gradient horizontal de pression entre l'équateur et les pôles, de plus en plus marqué à mesure que l'on s'élève du sol (voir Figure 2). Ce gradient de pression provoque un mouvement d'air en altitude, de l'équateur vers les tropiques. Le reste de la cellule de Hadley se met en place pour "fermer" la circulation d'air, par simple conservation de la masse.

conclusionGénéralisation

Le mécanisme de la cellule de Hadley, connu depuis longtemps sur Terre, semble être universel dans les atmosphères des planètes, mais avec des caractéristiques différentes (extension en latitude, nombre de cellules) selon les propriétés physiques de l'atmosphère. Il est essentiel à la compréhension des mouvements à grande échelle d'une atmosphère et permet d'expliquer le transfert d'énergie de l'équateur vers les tropiques. Il est en réalité très complexe à comprendre dans les détails, et on trouve sur Terre d'autres mécanismes de transfert d'énergie au-delà des tropiques (voir Figure 1).

Circulation atmosphérique terrestre
circulation.png
Structure des mouvements atmosphériques globaux sur Terre.
Crédit : T. Navarro
Origine de la circulation de Hadley
hadley.png
La cellule de Hadley trouve son origine dans un mouvement d'air en altitude de l'équateur vers les tropiques dû à un gradient de pression.
Crédit : Thomas Navarro

attentionPrécision

La circulation de Hadley n'est pas une cellule de convection. Son origine est une différence de chauffage en latitude, suivant l'horizontale, et non un gradient thermique vertical qui génère une force de flotabilité qui s'oppose à la gravité comme dans le cas de la convection. Ainsi, pour déterminer les dimensions de la cellule de Hadley il faut connaître la vitesse de rotation de la planète et le gradient horizontal de pression, des phénomènes qui ne rentrent pas en jeu dans les causes de la convection.