Un interféromètre de Michelson permet de tracer l'interférogramme d'une source, càd la figure d'interférence obtenue après déphasage de l'une des 2 voies de l'interféromètre d'une différence de marche . L'interférogramme du spectre d'une source réelle, délimitée par un intervalle spectral fini, illustre le phénomène de cohérence temporelle : le signal d'interférence chute dès lors que la différence de marche devient grande.
La cohérence temporelle décroît d'autant plus rapidement que le spectre de la source présente une gamme de longueurs d'onde importante.
Le cas d'une source rigoureusement ponctuelle et monochromatique est souvent évoqué pour aborder l'optique géométrique et physique. Une source ne sera jamais totalement monochromatique, même si son spectre présente des raies d'émission très étroites, ou si par dispersion ou filtrage on sélectionne un très fin domaine spectral. La cohérence temporelle d'une onde rend compte de sa chromaticité.
Une approche rigoureuse passe par le théorème de Wiener-Khintchine.
Interféromètre de Michelson
Tout phénomène d'interférence avec une source monochromatique conduit à une modulation de l'amplitude résultante fonction de la longueur d'onde du rayonnement.
Pour une source polychromatique, mélanger les couleurs revient donc à mélanger des périodes différentes : la cohérence temporelle du signal est prise en défaut.
(Ne pas hésiter à aller voir les pages dédiées au spectromètre par TF).
L'exemple d'un interféromètre par transformée de Fourier (réglé en anneau) présente la problématique : la visibilité des franges décroît d'autant plus rapidement que le domaine spectral accepté est vaste.
Pour une raie monochromatique, l'interférogramme se développe, en fonction de la différence de marche, comme :
Pour une raie réelle, présentant une largeur non infiniment fine, il faut tenir compte de la contribution des différentes composantes spectrales.
L'intégration, fonction du profil spectral de la raie, conduit à :
L'expression de la fonction de visibilité des franges dépend de l'intégration du profil spectral , et n'est pas nécessairement simple. La visibilité :
Un exemple de démonstration, dans un cas simplifié, est donné en exercice.
Dans le cas général, le degré de cohérence d'une source polychromatique, complexe, s'écrit :
La démonstration résulte du théorème de Wiener-Khintchine.
La longueur de cohérence , qui mesure l'étendue du degré de cohérence, vérifie approximativement :
La visibilité des franges d'interférences dépend de la largeur de l'intervalle spectral considéré. La superposition de franges de couleurs différentes, donc de périodes différentes, conduit à un signal d'interférence en moyenne nulle.
pages_coherence-temporelle/coherence-temporelle-sexercer.html