Unités angulaires


Observer

Se repérer

Les cartes du ciel ci-jointes repèrent les étoiles les plus brillantes par 2 coordonnées angulaires, pour 2 régions du ciel, sur l'équateur céleste ou proche du pôle nord céleste.

L'une de ces coordonnées angulaires, appelée ascension droite, est exprimée en unités horaires (h, min, s).

La pleine échelle vaut 24 h, équivalant à 1 tour de ciel, ou 360 degrés.

constellationOrion.png
Carte du ciel, dans la région d'Orion. Les étoiles sont repérées par leurs coordonnées équatoriales (ascension droite en abscisse, déclinaison en ordonnée), analogues aux coordonnées géographiques (longitude, latitude) utilisées pour un lieu sur Terre. Magnitudes et types spectraux sont également indiqués.
Crédit : BSC/ASM
pole.png
Carte du ciel, autour de l'étoile polaire. Les étoiles sont repérées par leurs coordonnées équatoriales, analogues aux coordonnées géographiques (longitude, latitude) utilisées pour un lieu sur Terre.
Crédit : BSC/ASM
cartenord.jpg
Carte des constellations de l'hémisphère Nord. On y reconnaît la Grande Ourse, le Lion, le Triangle, les Gémeaux...
Crédit : Bibliothèque de l'Observatoire de Paris

Constellations

Les constellations réunissent de façon arbitraire des étoiles voisines. Les histoires que racontent les constellations ou les groupes de constellation offrent un support à la mémoire.

Les tracés de constellation peuvent joindre les étoiles (la Grande Ourse devenant ainsi une casserole), ou peuvent les délimiter (les représentations du cours ont choisi cette convention de l'Union Astronomique Internationale).


Apprendre

Coordonnées équatoriales

Le ciel, sans la dimension de profondeur, est analogue à la surface d'une sphère. Usuellement, on y repère un astre par son ascension droite et sa déclinaison. Ces 2 coordonnées sont définies dans un repère lié à la Terre : un des axes s'appuie sur l'axe polaire terrestre, l'autre sur l'équateur.

La déclinaison, équivalant à la latitude, varie de -90 à +90 degrés, ces limites pointant respectivement les pôle sud et nord célestes.

L'ascension droite est comptée en heure, minute et seconde. L'origine des ascensions droites est la direction du point vernal.

La conversion entre heure, minute et seconde d'une part, et degré, minute d'arc et seconde d'arc d'autre part, est donnée par la table ci-jointe.

La conversion entre heure, minute et seconde d'une part, et degré, minute d'arc et seconde d'arc d'autre part, est donnée par la table ci-jointe qui propose une conversion entre les unités horaires et angulaires. Le facteur 15 provient simplement de la division du jour (1 tour, ou 360 deg), en 24 heures, soit une rotation de 15 deg/h. Attention à bien respecter les unités, afin de ne pas confondre minute horaire et minute angulaire, qui ne sont pas égales.

Conversions angulaires
1 heure = 15 deg1 deg = 4 min 1 deg = 0.0174 rad
1 minute= 15' 1 ' = 4 s 1' = 0.29 mrad
1 seconde= 15" 1" = 1/15 s1" = 5 microrad

Ecriture

Il est nécessaire de distinguer l'écriture décimale de l'écriture développée dans ces systèmes d'unités qui reposent sur une base non décimale.

Par exemple : 1.50^\circ = 1^\circ 30', mais 1.30^\circ \not = 1^\circ 30'

Conversion en radian

L'unité angulaire dans le système international d'unités (SI) est le radian. Vu l'usage intensif de la seconde d'arc en astronomie, il est utile d'avoir en tête l'ordre de grandeur :

1"\ \simeq\ 5.10^{-6} {\,\mathrm{rad}}


Simuler

Cartographie

Exemple d'utilisation de l'appliquette : galaxie NGC1316, elliptique, en train de cannibaliser une petite galaxie elliptique.

application.png

Coordonnées

A l'aide du curseur, estimer les coordonnées angulaires des points du champ dans la constellation d'Orion, pour en déduire l'ordre de grandeur de ses dimensions angulaires.

application.png

Vérifier l'accord avec les coordonnées 2000 de 4 objets du champ, et repérer la nébuleuse d'Orion M42.

étoile \alpha (h, min, s) \delta (deg, ', ")
Bételgeuse 05 55 10 +07 24 25
Rigel 05 14 32 -08 12 06
Bellatrix 05 25 08 +06 20 59
M 42 05 35 17 -05 23 28

Carte du ciel

Reprendre le relevé pour la carte synthétique de la région d'Orion. Pourquoi l'accord est-il meilleur ?

application.png


S'exercer

qcmQCM

1)  3^\circ 45' 30" =



2)  1 minute d'angle représente :



3)  1 mrad représente



4)  1 minute de temps représente



exerciceUn tour de ciel

Difficulté :    Temps : 20 min

En unité naturelle angulaire, le ciel, comme toute sphère, couvre 4\pi stéradians (pour s'en convaincre si besoin est, se rappeler l'aire de la sphère de rayon R). L'astronome préfère exprimer les angles en degré, heure et minute d'angle (º, \ ',\ "). Les instruments astronomiques ont des champs de vue qui varient typiquement de 1" \times 1" à 1^\circ \times 1º pour les instruments grand champ.

Question 1)

Traduire 4\pi {\,\mathrm{sr}} en degré carré, puis en minute et seconde carrée.

Question 2)

Un instrument imageur couvre un champ carré de 12' de côté (projet DENIS, mené à l'Observatoire Austral Européen (ESO), pour la cartographie infrarouge du ciel austral). Il pose en 3 couleurs dans l'infrarouge (filtres I, J, K à respectivement 0.85, 1.25 et 2.15 micromètres), avec des temps de pose de l'ordre de 10 à 30 s, soit environ 1 minute pour les 3 filtres. Il permet ainsi de cartographier une moitié du ciel, jusqu'aux magnitudes limites 18.5 à 14. Estimer la durée du programme d'observation (5 h/nuit pour compter les aléas divers et météorologiques).


S'évaluer

exerciceDétails lunaires

Difficulté : ☆☆   Temps : 20 min

La surface de la Lune a été observée par le système d'optique adaptative (OA) de l'ESO. Les clichés ci-joints permettent de comparer l'apport de cette technique. La largeur totale du champ représente 26", pour 201 pixels.

oa-surface-lune.jpg
Avec optique adaptative (à droite), la surface de la Lune présente des détails inaccessibles sur l'image non corrigée (système d'OA NAOS, développé pour le VLT à l'ESO). La largeur totale du champ représente 26".
Crédit : ESO

application.png

Question 1)

Quelle est la taille angulaire d'un pixel ? En déduire la taille linéaire, en km, du champ de vue d'un pixel et du champ de vue total, la Lune étant à 384 000 km de la Terre lors de l'observation.

[2 points]

Question 2)

À l'aide de l'appliquette, estimer le diamètre apparent du gros cratère, les tailles des plus petits détails visibles, avec ou sans optique adaptative.

[1 points]


Réponses aux QCM

pages_unite-angle/unite-angle-sexercer.html

QCM


Réponses aux exercices

pages_unites/unite-angle-sexercer.html

Exercice 'Un tour de ciel'


pages_unites/unite-angle-sevaluer.html

Exercice 'Détails lunaires'