Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Compléments de Physique

Le photon

Auteur: Benjamin Mollier

introductionL'effet photoélectrique

Tout ce que nous venons de dire permet de décrire beaucoup de phénomènes optiques, mais pas l'effet photoélectrique. Quel est ce phénomène qui échappe encore à notre description ?

L'effet photoélectrique se manifeste quand on éclaire un métal avec un rayonnement UV. Des électrons sont alors arrachés du métal à cause de cette lumière. Pour que les électrons soient arrachés, il faut leur communiquer de l'énergie en quantité suffisante. Sous un certain seuil d'énergie, les électrons ne pourront pas quitter la plaque de métal. Mais au-dessus d'un certain seuil, ils pourront "sauter la barrière" et quitter le métal.

Intuitivement, on peut se dire que plus l'intensité de la lumière est importante, plus grande sera l'énergie apportée aux électrons. Au dessus d'un certain flux lumineux, l'effet photoélectrique se manifestera. Il n'en est rien. Si on éclaire la plaque avec de la lumière rouge, verte ou bleue, quelle que soit l'intensité du flux, aucun électron n'est jamais émis. Par contre, dès qu'on descend en longueur d'onde, et qu'on atteint l'ultraviolet, l'effet photoélectrique apparaît. Même à faible flux lumineux ! Ça n'est pas intuitif du tout !

Effet photoélectrique
EffetPhotoelec01.jpg
L'effet photoélectrique ne dépend pas de l'intensité du flux lumineux, mais uniquement de la longueur d'onde. Cet effet ne s'explique pas en optique ondulatoire, mais uniquement en mécanique quantique.
Crédit : B. Mollier

definitionL'hypothèse du photon

Comment expliquer ceci ? Il faut revenir à l'hypothèse corpusculaire. La lumière est vue comme un flux de petits grains, qu'on appellera photons, chacun transportant une petite quantité d'énergie, un quantum d'énergie. En quoi ça change ? Et bien, d'une part l'énergie totale est proportionnelle au nombre de photon. Plus il y a de photons, plus on apporte d'énergie. Mais aucun photon, pris individuellement, ne possède l'énergie suffisante pour faire "sauter" un électron. Sauf en dessous d'une certaine longueur d'onde. Là chaque photon, même en très petit nombre, peut arracher un électron. On en déduit que l'énergie des photons est inversement proportionnelle à la longueur d'onde, ou, de manière équivalente, proportionnelle à la fréquence.

E = h\nu

La constante de proportionnalité h est appelée constante de Planck, et vaut h=6,62.10^{-34}\ J.s.

Effet photoélectrique
EffetPhotoelec02.png
L'électron ne peut changer de niveau que si le photon incident possède sensiblement la même énergie que le niveau à "sauter".
Crédit : ASM/B. Mollier
Page précédentePage suivante