Le passage répété d'une planète devant son étoile provoque une diminution périodique de la luminosité de l'étoile. La forme de la figure de transit dépend du diamètre relatif de la planète par rapport à celui de l'étoile, de l'inclinaison du système par rapport à la ligne de visée, de l'épaisseur et de la composition de l'éventuelle atmosphère de la planète.
On retire des observations : la période orbitale, le demi-grand axe, et surtout l'inclinaison de l'orbite (voisine de 90°). Cette dernière n'est pas mesurable par la méthode des vitesses radiales.
Potentiellement, la comparaison des mesures spectroscopiques de l'étoile avant et pendant le transit peut donner accès à la composition de l'atmosphère planétaire.
Le transit de l'étoile HD 209458 a conduit à la détection d'une atmosphère planétaire étendue, qui explique l'allure de la courbe d'occultation dans la raie Lyman alpha de l'hydrogène.
Le passage récurrent d'une planète devant son étoile parente provoque une diminution périodique du flux reçu de l'étoile si le système est observé sous un angle adéquat, i.e. si la planète traverse la ligne de visée de l'observateur.
La diminution relative du flux émis par l'étoile dans la direction de l'observateur lors du transit de la planète est :
où est le rayon de la planète et celui de l'étoile. On suppose ici que le flux était uniforme à la surface de l'étoile (le détail du calcul est traité en exercice).
Les systèmes les plus facilement détectables, avec une planète de type Jupiter chaud, ont un rayon de l'ordre de 10 à 20% du rayon stellaire d'une étoile froide de la séquence principale. Ils induisent des baisses de flux de l'ordre de quelques pourcents.
La variation relative de flux pour un système de type Soleil-Jupiter est de 1%, et de pour un système tel que Soleil-Terre.
L'intérêt d'observer le transit d'une planète déjà détectée par la méthode des vitesses radiales est qu'on peut ainsi déterminer sa masse réelle. En effet, un transit ne se produit que si la ligne de visée de l'observateur est à peu près dans le plan orbital du système, i.e. pour . La masse est donc dans ce cas égale à la masse réelle . Le transit permet également de déterminer le rayon de la planète, le rayon de l'étoile étant estimé par une autre méthode.
Une information essentielle pourra également être apportée par cette méthode : la présence ou non d'une atmosphère autour de la planète, reliée à la pente de l'extinction du flux, progressive en présence d'une atmosphère. Cette détection est extrêmement importante, car on peut connaître la composition de cette atmosphère en comparant les mesures spectroscopiques de l'étoile avant et pendant le transit. Il est en principe possible de rechercher des signes d'activités exobiologiques en détectant des composants gazeux dont l'abondance est un indice de la présence d'organismes vivants... mais hors de portée des moyens actuels.
Animation reliant la courbe de lumière à l'évolution temporelle de la géométrie du système. L'inclinaison du plan orbital planétaire est un paramètre crucial. La signature photométrique diffère selon que l'inclinaison est très proche ou voisine de 90 degrés, ou trop éloignée.
Difficulté : ☆ Temps : 20 min
HD 209458 est une des nombreuses étoiles hébergeant une exoplanète. On cherche à caractériser le transit de cette dernière. Les notations sont les mêmes que celles des pages précédentes.
Retrouver l'expression de la diminution relative de luminosité :
On suppose le flux (équivalent à une luminosité, ou puissance, surfacique) stellaire uniforme :
.
Calculer le rayon de la planète HD 209458b, au vu des mesures reportées ci-dessous.
Masse de l'étoile | 1.03 | |
Rayon de l'étoile | 1.2 | |
Rayon de Jupiter | 0.1 | |
Rayon de Jupiter | ||
Masse de Jupiter | ||
Variation relative du flux | 1.58% |
Calculer la masse volumique de l'exoplanète, sachant que sa masse vaut . Quelle remarque vous inspire ce résultat ?
pages_exoplanete/methode-transit-sexercer.html
Estimer la différence de luminosité avec et sans éclipse, fonction de la surface stellaire visible, variable, et du flux surfacique, fixe.
avec , et . Donc :
Il s'agit d'une simple application numérique
En reliant la masse à la masse volumique et au volume, on trouve :
Cette planète est bien moins dense que Saturne (). C'est une géante gazeuse. Et si l'on trouvait un océan suffisamment grand, la planète y flotterait ...