Aux grandes longueurs d'onde, submillimétriques ou radio, les techniques interférométriques s'imposent pour un gain en résolution angulaire (voir l'exercice correspondant).
On nomme VLTI la configuration interférométrique des télescopes du VLT. La longueur de cohérence pour une source astronomique étant limitée, l'obtention de franges d'interférence nécessite des lignes à retard pour mélanger les faisceaux des différents collecteurs. Une des premières opérations du VLTI a consisté en la mesure de diamètres stellaires d'étoiles de la séquence principale. La mesure de ces diamètres angulaires est impossible sans la haute résolution apportée par l'interférométrie.
Les mesures effectuées sont des mesures de visibilité de franges d'interférence. Plus la source est étendue, moins la visibilité des franges est marquée.
Augmenter la résolution angulaire, ultimement limitée par la diffraction d'un collecteur, en faisant interférer les faisceaux de plusieurs collecteurs.
Diffraction, interférence ; la notion de cohérence spatiale est nécessaire pour justifier les techniques d'interférométrie.
Les faisceaux issus de 2 collecteurs pointant le même objet sont recombinés, de manière cohérente, pour interférer.
La ligne de base entre 2 collecteurs étant notée , la résolution angulaire de la tache image des faisceaux interférant à la longueur d'onde vaut .
Exemple de valeur numérique : dans le proche infrarouge, pour une base de 100 m : .
Exemple de recombinaison : interféromètre de type Michelson, ou bien Fizeau. Dans ce dernier cas, les surfaces collectrices sont des éléments disjoints d'une surface collectrice unique.
L'interférométrie s'est développée dans un premier temps dans le domaine radio. Dans ce domaine de fréquence, la détection cohérente permet une recombinaison du signal plus aisément qu'aux fréquences optiques. La phase du signal étant enregistrée, cette recombinaison n'a même pas à être nécessairement menée en temps réel. L'interférométrie dans le domaine des grandes longueurs d'onde apparaît par ailleurs le plus souvent indispensable, la taille de la tache de diffraction dans ce domaine conduisant, malgré les grands diamètres collecteurs, à une résolution angulaire médiocre. L'interférométrie est aujourd'hui développée jusque dans le domaine visible : en l'absence de pupille de grande taille, c'est la seule technique donnant accès à la haute résolution angulaire.
On s'intéresse aux interférences construites entre paires de collecteurs. Le problème se ramène à une situation de type trous d'Young, avec l'analogie entre les trous d'Young et les collecteurs.
La longueur de cohérence du faisceau stellaire est limitée. Réaliser des interférences ne se limite pas à une sommation des intensités lumineuses : observer des franges d'interférence nécessite d'égaler les chemins optiques des 2 voies à quelques longueurs d'onde près avant leur recombinaison. Des lignes à retard optiques permettent de réaliser ceci.
De la même façon que le paramètre pertinent pour visualiser les franges d'interférences issus des trous d'Young est l'écart angulaire par rapport à l'image géométrique, il est utile de faire la correspondance entre la projection des lignes de bases de l'interféromètre, projetées sur le plan d'onde. Une configuration donnée, à une date donnée, va conduire à la mesure de la visibilité des franges d'interférences pour un vecteur angulaire donné .
La courbe de visibilité dépend de la taille angulaire de la source, dès lors que celle-ci est résolue par l'interféromètre. Plus la source sera étendue, plus les franges d'interférence apparaîtront brouillées dès lors que l'on s'éloigne angulairement de la direction de l'optique géométrique.
La ligne de base correspond à la projection sur le plan du ciel, donc orthogonale à la ligne de visée, de la position des télescopes. Du fait de la rotation de la Terre, elle varie au cours de l'observation.
Les animations ci-jointes montrent comment évoluent, au cours d'une séquence d'observation, les lignes de base d'un site avec 3 télescopes interférant, avec les fréquences spatiales sur le plan du ciel.
Si l'objet ne varie pas rapidement dans le temps, il est possible de prendre le temps de nombreuses configurations interférométriques, au besoin avec des changements de positions des télescopes (lorsque cela est possible), pour reconstituer suffisamment de fréquences spatiales et imager en détail l'objet.
Difficulté : ☆ Temps : 10 min
Les antennes de l'IRAM du plateau de Bure ont un diamètre de 15 m.
Déterminer la tache d'Airy, pour une observation menée à 230 GHz.
Que devient cette résolution pour une observation interférométrique avec une ligne de base de 400 m ? Déterminer le gain en éléments de résolution sur un objet.
pages_interferometrie-spatiale/interferometrie-spatiale-sexercer.html
pages_former/interferometrie-spatiale-sexercer.html
Revoir le cours sur la diffraction
Une fréquence de 230 GHz correspond à une longueur d'onde de 1.3 mm.
Avec la correspondance 230 GHz / 1.3 mm, on calcule l'extension angulaire de la diffraction :
Avec une base :
Un objet étendu de diamètre 21" est dans le premier cas visualisé sur 1 élément de résolution, et sur dans le second.