Spectrométrie par transformée de Fourier

Auteur: Benoît Mosser

Introduction

Un spectromètre par transformée de Fourier ne décrit pas directement les raies d'un spectre, mais les fréquence spatiales qui transcrivent ces raies, dans un interférogramme. Il réalise physiquement une opération équivalente à une transformation de Fourier ; l'interférogramme donne ensuite la mesure du spectre par une transformation de Fourier inverse, calculée.

Un spectromètre par transformée de Fourier est un instrument basé sur un interféromètre de Michelson.

procyonfts.png
Spectre de Procyon dans le proche infrarouge, aux alentours de 1.07 {\,\mu\mathrm{m}} obtenu avec un FTS (Fourier Transform Spectrometer).
Crédit : ASM
ftscfht.jpg
Spectromètre par transformée de Fourier, dans sa cuve à vide, au foyer Cassegrain du télescope CFH.
Crédit : CFH

Principe instrumental


Observer

Montage optique

Un spectromètre par transformée de Fourier correspond à un interféromètre de Michelson réglé en anneau : les 2 miroirs sont, à une image via la séparatrice près, parallèles, séparés de la différence de marche.

ftsprinc.png
Un décalage de d/2 du miroir M1 par rapport à la position équilibrée conduit à une différence de marche d entre les 2 faisceaux recombinés par la lame séparatrice (en vert).
Crédit : ASM

Les interférences sont localisées à l'infini. Les voir nécessite de regarder à l'infini, p.ex. au foyer d'une lentille.


Apprendre

prerequisPrérequis

Principe de l'interféromètre de Michelson ; transformation de Fourier.

objectifsObjectifs

Expliciter en quoi un interféromètre est dit de Fourier.

Interférences à 2 ondes

On note \delta la différence de marche entre les 2 faisceaux monochromatiques interférant à l'infini, et \varphi le déphasage. La relation entre \varphi et \delta s'exprime, à la longueur d'onde \lambda :

{\varphi \over 2\pi}\ =\ {\delta \over \lambda}

On notera par la suite, en fonction du nombre d'onde :

\varphi \ =\ 2\pi\sigma \delta

Issus de la même source, ces faisceaux sont cohérents, et leurs amplitudes vont s'additionner. En notation complexe :

A = A_1 + A_2 = A_0\ \bigl( 1 + \exp i \varphi \bigr)

Interférogramme

L'intensité diffractée, pour une différence de marche \delta entre les 2 miroirs, sur l'axe, càd dans l'anneau central, constitue l'interférogramme. En lumière monochromatique de nombre d'onde \sigma, le signal d'interférence s'écrit à la différence de marche \delta :

I(\delta) \ = \ \bigl| A \bigr|^2 \ = \ I_0 \ (1+\cos 2\pi \sigma \delta)

Les unités couramment employées sont, pour le spectre, les nombres d'onde, comptés en {\,\mathrm{cm}}^{-1} et la différence de marche, comptée en cm. La période spatiale de l'interférogramme est 1/\sigma, soit tout simplement la longueur d'onde \lambda.

Interférences et transformée de Fourier

Pour une source non-monochromatique de densité spectrale \mathcal{F} (\sigma), dans la bande spectrale [\sigma_1, \ \sigma_2], l'interférogramme prend la valeur :

I(\delta) \ = \ \int_{\sigma_1}^{\sigma_2} { \mathcal{F}}(\sigma) \ \Bigl[ 1 +\cos 2\pi \sigma \delta\Bigr] \ {\mathrm{d}} \sigma

Sans cohérence temporelle entre les différentes couleurs, il y a sommation des intensités spectrales \mathcal{F} = {\mathrm{d}} I / {\mathrm{d}} \sigma. La partie modulée (càd qui dépend de la différence de marche \delta) de l'interférogramme, correspond à la partie réelle de la TF de la densité spectrale :

I'(\delta) \ = \ \mathrm{Re}\ \left\{ \int_{\sigma_1}^{\sigma_2} \mathcal{F} (\sigma) \ \exp (i 2\pi \sigma \delta)\ {\mathrm{d}} \sigma\right\} \ \simeq\ \mathrm{Re}\ \left\{ \mathrm{TF} \bigl( \mathcal{F}(\sigma)\bigr) \right\}

En fait, l'interférogramme réalise la TF de la distribution spectrale de la source. Il s'ensuit que la TF inverse de l'interférogramme permet de remonter au spectre :

\mathcal{F} (\sigma)\ \simeq\ \mathrm{TF}^{-1} \bigl\{ I(\delta)\bigr\}

Cette dernière étape est réalisée par calcul (et l'essor des spectromètres par transformée de Fourier a accompagné celui des ordinateurs).


Simuler

Le principe instrumental

Un spectromètre par transformée de Fourier comprend un interféromètre à 2 ondes, de type interféromètre de Michelson.

ftsprinc.gif
Le FTS dans un monde où la vitesse de la lumière vaut quelques pixels par seconde. La lame semi-réfléchissante sépare les faisceaux. Celui réfléchi sur le miroir mobile est retardé, et lors de la recombinaison sur la lame semi-réfléchissante apparaît une différence de marche entre les 2 faisceaux.
Crédit : ASM

L'instrument

FTS du CFHT application.png

L'appliquette ad-hoc décrit le FTS (Fourier Transform Spectrometer) du télescope CFH.

L'interféromètre est de type Mach-Zehnder, plus efficace que l'interféromètre de Michelson car il peut récupérer, sur 2 voies en opposition de phase, 2 interférogrammes : la totalité des photons émis est ainsi utilisée (aux réflexions et transmissions près), contrairement à l'interféromètre de Michelson qui renvoie la moitié des photons vers la source.


Interférogrammes


Observer

procyonfts.png
Spectre de Procyon dans le proche infrarouge, aux alentours de 1.07 {\,\mu\mathrm{m}} obtenu avec le FTS (Fourier Transform Spectrometer) du télescope CFH.
Crédit : ASM
choixddm1.png
Des motifs d'interférence se retrouvent à diverses différences de marche. A grande différence de marche, l'interférogramme est dominé par le bruit de photons.
Crédit : ASM

Filtre

Un filtre est nécessaire pour sélectionner une bande passante limitée du spectre étudié. L'interférogramme associé à cet exemple va comprendre des motifs liés au signal spectral dans le filtre.

choixddm0.png
Le contraste du signal chute rapidement dès lors que la différence de marche n'est plus nulle.
Crédit : ASM

Interférogramme proche de la différence de marche nulle

Au proche voisinage de la différence de marche nulle, les franges restent bien contrastées. Le contraste des franges baisse rapidement au fur et à mesure de l'éloignement de la différence de marche nulle.

Interférogramme complet

L'interférogramme complet comprend divers motifs, construits selon les interférences entre les raies sélectionnées par le filtre.

choixddm2.png
Zoom sur un motif de l'interférogramme.
Crédit : ASM

Zoom dans l'interférogramme

La visualisation d'un train de franges de l'interférogramme montre une belle portion de sinusoïde modulée par l'enveloppe du train de franges.


Apprendre

objectifsObjectifs

Décrire l'allure de l'interférogramme.

Le spectre théorique initial

Le spectre comprend les données en entrée :

L'avantage de travailler avec une telle unité spectrale est d'avoir des variables directement conjuguées entre le spectre et l'interférogramme :

\sigma \ ( {\,\mathrm{cm}}^{-1}) \ \longleftrightarrow \ \delta\ ( {\,\mathrm{cm}})

Ces unités employées, quoique hors SI, présentent l'avantage d'être inverses l'une de l'autre.

Interférogramme et TF

L'interférogramme calculé représente la quantité :

I(\delta) \ = \ \int_{\sigma_1}^{\sigma_2} \mathcal{F} (\sigma) \ \cos 2\pi \sigma \delta \ {\mathrm{d}} \sigma

où l'on reconnaît la partie réelle de la TF de la densité spectrale \mathcal{F} (\sigma).

L'interférogramme réalise physiquement la TF de la distribution spectrale de la source. La TF inverse de l'interférogramme, calculée, permet de remonter au spectre.

Etendue de faisceau

L'interféromètre étant réglé en anneaux, le principe instrumental ne nécessite pas l'introduction d'une fente d'entrée, contrairement à un spectromètre à réseau. L'étendue de faisceau n'est donc pas drastiquement limitée par une fente ; en pratique, elle est limitée par la nécessité de travailler dans un coeur de frange.

Ceci est convenablement dimensionné dans un exercice.


Simuler

Le signal sur l'axe

L'animation ci-jointe montre comme évolue l'interférogramme en fonction de la différence de marche, pour une onde strictement monochromatique.

variddm.gif
En ramenant optiquement les 2 miroirs sur l'axe, on peut représenter directement la différence de marche, et en déduire le signal oscillant pour une source monochromatique.
Crédit : ASM

Les anneaux

Les miroirs étant parallèles, les franges d'interférence présentent la symétrie de révolution autour de l'axe optique ; ce sont des anneaux. On remarque que, par stationnarité de la différence de marche \delta\cos i, avec i l'inclinaison, autour de l'inclinaison nulle, la tache centrale est relativement plus large que les autres anneaux.

anneaux.gif
Construction des anneaux d'interférence, pour des inclinaisons importantes sur l'axe.
Crédit : ASM

S'exercer

exerciceInterférogramme d'un doublet

Difficulté : ☆☆   Temps : 30 min

On illumine un interféromètre de Fourier avec une source ponctuelle présentant un doublet, aux nombres d'onde \sigma_1 et \sigma_2 voisins. Chacune des raies est supposée monochromatique, et leurs intensités égales.

Question 1)

Déterminer l'expression de l'interférogramme I( \delta). Mettre en évidence deux périodes caractéristiques de l'interférogramme.

Question 2)

Déterminer la période des battements et représenter l'allure de l'interférogramme, pour le doublet du sodium : \lambda_1 = 589.0 {\,\mathrm{nm}} et \lambda_2 = 589.6 {\,\mathrm{nm}}.


S'évaluer

exerciceInfluence de l'inclinaison

Difficulté : ☆☆   Temps : 30 min

Les 2 miroirs d'un interféromètre de type Michelson sont réglés parallèles (au rôle de la séparatrice près). On note \delta la différence de marche à incidence nulle.

Question 1)

Montrer que la différence de marche pour un faisceau d'incidence i devient \delta \cos i. Faire un schéma.

[1 points]

Question 2)

A quelle condition la différence de marche varie-t-elle de moins d'une fraction \mathcal{F} de longueur de longueur d'onde ?

[1 points]

Question 3)

Faire l'application numérique pour une ddm de 1 cm, et une fraction limitée à 10%, à 1 micron.

[1 points]


Visibilité des franges


Observer

raiena0.png
Le filtre sélectionne ici 2 raies (les raies modélisées du doublet du sodium). La variable spectrale est donnée en nombre d'onde {\,\mathrm{cm}}^{-1}.
Crédit : ASM

Au fil de l'interférogramme

Un interférogramme présente une modulation, de période égale à la longueur d'onde moyenne sélectionnée par le filtre.

raiena003.png
Interférogramme du spectre synthétique du sodium. Le domaine spectral étant large, le contraste décroît avec la longueur d'onde. Les oscillations ont pour période moyenne 589.3 nm.
Crédit : ASM

L'interférogramme présente à plus grande différence de marche des motifs liés à la nature du signal. A très grande différence de marche, il perd tout contraste.

raiena03.png
Interférogramme du spectre synthétique du sodium. Les motifs sont dus au doublet du sodium. Leur effacement à grande différence de marche provient de la non-cohérence du signal spectral : les raies du sodium présentent une certaine largeur, càd une longueur de cohérence limitée. A l'échelle de cet interférogramme, la modulation présente lorsque l'on zoome sur une portion de l'interférogramme n'est plus visible ; on visualise ici essentiellement l'enveloppe du signal, qui représente les variations du contraste.
Crédit : ASM
raiena3.png
Interférogramme du spectre synthétique du sodium. Les franges perdent leur contraste à grande différence de marche.
Crédit : ASM

Apprendre

objectifsObjectifs

Introduire la notion de contraste, qui rend compte d'une modulation amoindrie dans l'interférogramme d'une raie réelle, qui n'est pas strictement monochromatique.

Le contraste représente globalement l'allure de l'interférogramme, avec des trains de franges plus ou moins contrastés (chaque frange n'étant localement qu'essentiellement un bout de sinusoïde de période égale à la longueur d'onde moyenne sélectionnée par le filtre d'entrée.

Monochromaticité

Un laser présente une bonne réalisation pratique d'une raie monochromatique. Sa longueur de cohérence peut être tellement grande que la réalisation de son interférogramme conduit effectivement à un signal également modulé à toute différence de marche :

I(\delta) \ = \ I_0 \ (1+\cos 2\pi \sigma \delta)

Mais une source réelle ne présente pas un telle cohérence (autrement dit, elle est moins monochromatique), et cela modifie les propriétés de l'interférogramme, qui apparaît moins contrasté.

Définition du contraste

definitionDéfinition

Le contraste \mathcal{C} des franges est le rapport entre l'amplitude de modulation de la frange à l'énergie totale I_0 collectée dans le filtre.

Le contraste se mesure localement dans l'interférogramme par :

{ \mathcal{C}} \ = \ {I _{\mathrm{max}} - I _{\mathrm{min}}\over I _{\mathrm{max}} + I _{\mathrm{min}}}

Dans l'interférogramme d'une source avec une seule raie plus ou moins large, il intervient comme :

I (\delta) \ = \ I_0 \ \left[ 1 + { \mathcal{C}} (\delta) \cos(2\pi\sigma\delta)\right]

Visibilité des franges d'interférence

La visibilité des franges, ou leur contraste, dépend de la largeur des raies du spectre. Une approche simple est proposée en exercice.

Des animations montrent comment la visibilité évolue avec la largeur des raies, mais aussi avec la largeur du filtre.


Simuler

Visibilité

La visibilité des franges dépend de la largeur spectrale des raies étudiées. Plus les raies sont larges, moins les franges sont visibles à grande différence de marche.

animvisilarg.gif
Simulation d'une raie en émission, et interférogramme associé. Lorsque la raie s'élargit, les motifs interférométriques à différence de marche élevée disparaissent.
Crédit : ASM

S'évaluer

exerciceVisibilité des franges

Difficulté : ☆☆☆   Temps : 45 min

On alimente un spectromètre par TF par un spectre avec une seule raie, non monochromatique, de largeur \Delta\sigma. On note I_\sigma l'intensité spectrale, et I_0 = \int _{\mathrm{raie}} I_\sigma {\mathrm{d}} \sigma l'intensité dans la raie. Pour simplifier les calculs, on ne s'intéresse pas à un profil réaliste, mais à un profil de raie en émission idéalisé par :

\begin{eqnarray*} I_\sigma (\sigma) =& \displaystyle{I_0\over \Delta \sigma} \mathrm{ \ si\ } |\sigma-\sigma_0| \le \Delta\sigma/2\\ I_\sigma (\sigma) =& 0 \mathrm{ \ si\ } |\sigma-\sigma_0| > \Delta\sigma/2 \end{eqnarray*}

Question 1)

Justifier le fait que l'intensité totale I(\delta) enregistrée à la différence de marche \delta est la somme de toutes les intensités spectrales reçues.

[3 points]

Question 2)

Mener le calcul de l'interférogramme.

[3 points]

Question 3)

Montrer la relation :

I( \delta) \ = \ I_0\ \left(1 + { \mathcal{V}} \cos 2\pi\sigma_0 \delta \right)

et exprimer la fonction de visibilité des franges \mathcal{V} en fonction de \delta et \Delta\sigma.

[1 points]

Question 4)

Représenter schématiquement la fonction { \mathcal{V}} ( \delta ). Déterminer la première valeur \delta_{\Delta\sigma} qui annule la fonction de visibilité.

[2 points]


Échantillonnage


Apprendre

objectifsObjectifs

Décortiquer le fonctionnement d'un spectromètre par transformée de Fourier, en s'appuyant sur les propriétés d'une TF en lien avec les caractéristiques souhaitées du spectre.

Simulations

Une observation par spectrométrie de Fourier nécessite le choix de paramètres de Fourier efficaces pour l'enregistrement rapide de l'interférogramme. La comparaison entre le spectre initial et le spectre calculé à partir d'un interférogramme simulé permet de jauger la pertinence des choix effectués.

Principe... et propriétés de la TF discrète.

L'interférogramme, obtenu par pas de différences de marche équidistants de d, admet une fréquence de coupure \sigma _{\mathrm{c}}=1/2d. La valeur de cette fréquence, donc la valeur de d, ne peuvent pas être prises au hasard.

Le spectre étant recalculé à partir de l'interférogramme par transformée de Fourier rapide (fft), la validité du principe suppose que les bornes de l'intervalle spectral libre, multiples entiers consécutifs de \sigma _{\mathrm{c}}, encadrent entièrement le domaine spectral défini par le filtre d'entrée.

piquets1.png
L'intervalle spectral libre contient entièrement le domaine spectral : il est suffisamment large, et les 2 bornes du signal sont comprises dans le même segment multiple de l'intervalle spectral.
Crédit : ASM
piquets2.png
L'intervalle spectral libre ne contient pas entièrement le domaine spectral. Le principe de la spectrométrie par TF est alors inopérant.
Crédit : ASM
fts2.pngfts21.pngfts23.png
Avec 163 points, l'interférogramme est convenablement échantillonné, et l'intervalle spectral libre inclut toutes les données. Ce n'est pas le cas avec 162 ou 164 points : le nombre de points inadapté conduit à un mauvais repliement du spectre.
Crédit : ASM

Intervalle spectral libre

Quand bien même la largeur de l'intervalle spectral libre est suffisante, mais avec un spectre distribué sur 2 intervalles, le résultat ne sera pas correct, par suite du repliement des fréquences lors de la fft. Le nombre de points de l'interférogramme doit être optimisé. S'il diffère légèrement de la valeur optimale, le mauvais échantillonnage du signal conduit à retrouver un spectre à l'aspect tordu, par suite du repliement indu de fréquences mal séparées.

fts1.pngfts2.pngfts3.png
Le spectre initial est mieux reproduit lorsque l'interférogramme est obtenu avec une grande différence de marche maximale. Sur cet exemple, la résolution du spectre initial est reproduite avec un balayage de l'interférogramme jusqu'à 4 cm (R = 68000), alors que 0.1 ou 1.0 cm restent insuffisants (respectivement R = 1700 et 17000).
Crédit : ASM

Résolution spectrale

La résolution spectrale varie en fonction de la différence de marche maximale D explorée. Elle s'exprime simplement :

\delta\sigma = {1\over D}

Exemple : pour une raie à 20\,000 {\,\mathrm{cm}}^{-1} et D = 2 {\,\mathrm{cm}}, \delta\sigma = 0.5 {\,\mathrm{cm}}^{-1} et le pouvoir de résolution vaut donc R = \sigma / \delta\sigma = 40\,000.

fts2.pngfts22.png
Suréchantillonner ne sert à rien. Il n'y a pas plus d'information dans l'interférogramme à 1630 points que dans celui à 163.
Crédit : ASM

Echantillonnage

Rien ne sert de suréchantillonner l'interférogramme dès lors que le nombre de points N a été optimisé au sens des propriétés de la transformée de Fourier rapide.


Enregistrement d'un interférogramme


Apprendre

objectifsObjectifs

Montrer comment les paramètres d'un interférogramme doivent être choisis pour une optimisation de son acquisition respectant la résolution spectrale désirée.

Les paramètres du spectre

Le but de l'interférométrie consiste à obtenir une information spectrale avec les éléments désirés. Les paramètre de l'interférogramme doivent donc obéir à cette contrainte.

Le spectre est essentiellement caractérisé par :

Les paramètres de l'interférogramme

Deux paramètres construisent l'interférogramme :

Le lien entre les paramètres du spectre et de l'interférogramme dérivent des relations suivantes :

Critère de choix des paramètres de l'interférogramme

Le principe même de la spectrométrie par transformée de Fourier nécessite de sélectionner une région spectrale pas trop large, par un filtre adéquat, autour des raies à étudier. Ceci peut se comprendre de diverses manières : d'un point de vue expérimental, un filtre large va conduire à une teinte plate très rapidement, de laquelle plus aucune information ne sera extractible ; du point de vue de Fourier, il s'agit de pouvoir travailler dans une région limitée du spectre afin qu'un échantillonnage limité, conduisant à un intervalle spectral libre limité, suffise à recouvrer toute l'information spectrale.

Intervalle spectral libre

On note \sigma_{1,2} respectivement les bornes inférieure et supérieure de la bande passante utile. La largeur de la bande passante \Delta\sigma_{1-2} = \sigma_2 - \sigma_1 détermine le domaine des nombres d'onde dans lequel il ne doit pas y avoir confusion spectrale.

En d'autres termes, l'échantillonnage doit assurer une fréquence de coupure spatiale \sigma _{\mathrm{c}} = 1/2d telle que la largeur spectrale [\sigma_1, \ \sigma_2] du filtre soit comprise dans l'intervalle spectral libre [n \sigma _{\mathrm{c}}, \ (n+1) \sigma _{\mathrm{c}}] :

n\ \sigma _{\mathrm{c}} \ \le \ \sigma_1 \ \mathrm{ et } \ \sigma_2 \ \le \ (n+1)\ \sigma _{\mathrm{c}}

avec n un entier naturel.

Choix en pratique des paramètres de l'interférogramme

Il apparaît immédiatement la condition : \sigma _{\mathrm{c}} \ \ge \ \sigma_2 - \sigma_1. Si l'on suppose la différence de marche maximale D fixée, et donc la résolution fixée, on peut préciser le choix du nombre de points optimal N, résultant des 2 conditions ci-dessus.

En omettant tout d'abord que n et N doivent être entiers, leurs solutions réelles doivent vérifier :

n_\star \ \simeq\ {\sigma_1\over \sigma_2-\sigma_1}\ =\ {\sigma_1\over \sigma _{\mathrm{c}}} \ \mathrm{ et } \ \ N_\star \ \simeq \ 2 (\sigma_2 - \sigma_1) D \ = \ 2 \sigma _{\mathrm{c}} D

Comme ces 2 solutions ne sont pas nécessairement entières, il s'agit de déterminer les entiers N et n assurant de façon optimale :

N \ \ge \ N_\star\ \mathrm{ et } \ n\ \le \ n_\star \ \le\ n+1

C'est à dire :

N>2*sigma_c*D et simultanément  \ n\ \le \ {\sigma_1\over \sigma _{\mathrm{c}}} < {\sigma_2\over \sigma _{\mathrm{c}}}\ \le\ n+1

Les 2 inégalités concernant les entiers successifs n et n+1 assurent la validité de l'intervalle spectral \sigma _{\mathrm{c}} défini par N.

Paramètres
paramètres symbole unité
borne min. \sigma_1 {\,\mathrm{cm}}^{-1}
borne max. \sigma_2 {\,\mathrm{cm}}^{-1}
largeur du filtre\Delta\sigma {\,\mathrm{cm}}^{-1} \Delta\sigma =\sigma_2- \sigma_1
ddm maximale D cm
pas en ddm d cm
nombre de ddmN D = N d
résolution \delta\sigma {\,\mathrm{cm}}^{-1} 1/D
largeur interv. spectr. libre \sigma _{\mathrm{c}} {\,\mathrm{cm}}^{-1}N/2D = 1/2d

Simuler

Simulation

Reproduire le spectre nécessite le choix d'une résolution spectrale suffisante, ainsi que le choix en accord d'un nombre de points suffisant.

application.png

Pour la simulation il s'agit :

La simulation propose la valeur de N adaptée à l'intervalle spectral \sigma_2-\sigma_1 et à la résolution proposée.

Vérifier alors :


Exemples d'observation


Observer

Haute résolution spectrale

Sur une source brillante, la spectrométrie par transformée de Fourier permet d'atteindre des résolutions inégalées. Ceci peut s'avérer nécessaire pour des objectifs scientifiques tels la reconnaissance d'isotopes, ou l'identification complète d'un spectre de roto-vibration

ftshrmars.png
Spectre de l'eau dans l'atmosphère martienne, enregistré avec le spectromètre FTS du CFHT. L'identification de la molécule \mathrm{H}_2{}^{18}\mathrm{O} permet la mesure de l'abondance de l'isotope {}^{18}\mathrm{O} de l'oxygène.
Crédit : CFHT
ftshrmars2.png
Spectre d'une bande du dioxyde de carbone de l'atmosphère martienne, enregistré avec le spectromètre FTS du CFHT.
Crédit : CFHT

Spectro imagerie

L'étendue de faisceau admissible par un interféromètre de Fourier permet de réaliser un spectre sur un champ étendu. L'avantage de ce principe est de pouvoir analyser toute une région spatiale dans une raie donnée, ou d'observer un point du champ à diverses longueurs d'onde, en ayant un grand choix possible de résolutions spectrales. Ce genre d'observation a été réalisé avec le FTS du télescope CFH, sur différents objets : les poles de Jupiter montrant des aurores, des enveloppes d'hydrogène circumstellaires, des environnements stellaires.

bearjupiteraurores.jpg
Aurore polaire sur Jupiter, observée dans une raie de l'hydrogène moléculaire.
Crédit : CFHT
mol-env-ngc7027.jpg
Observations de l'environnement de la nébuleuse planétaire NGC 7027, dans la raie 1-0 S(1) de l'hydrogène moléculaire. La spectroimagerie permet ici de visualiser des régions d'isovitesse Doppler autour de NGC 7027. Les trous sont la signature de jets à haute vitesse.
Crédit : CFHT
YSOaroundmassivestar.jpg
YSO (jeunes objets stellaires) dans un nuage résiduel d'hydrogène moléculaire entourant l'étoile massive S-106 IR (plus de 15 fois la masse du soleil).
Crédit : CFHT

Réponses aux exercices

pages_fourier/fts-interferogramme-sexercer.html

Exercice 'Interférogramme d'un doublet'