Les biais statistiques


Observer

Le biais de Malmquist

Les observations extragalactiques portent sur des objets certes intrinsèquement très lumineux, mais apparemment très peu lumineux, et souvent si peu lumineux que la non détection des moins lumineux d'entre eux peut provoquer un biais dans les résultats observationnels. Ce biais peut affecter toute mesure statistique supposant, à tort, une population homogène d'objets.

Biais de Malmquist
malmquist.png
Identification du biais de Malmquist. Le graphe présente la magnitude absolue de galaxies très distantes, fonction de leur distance cosmologique z. Le nombre d'objets observés croît comme le carré de la distance. A grande distance, la non-détection des moins lumineux (objets indiqués en rouge) biaise la distribution observée. La moyenne des magnitudes absolues (en bleu) s'en ressent : elle est inférieure à ce que l'on observerait sans biais.
Crédit : ASM

Apprendre

objectifsObjectifs

Les premiers travaux utilisant la relation Tully-Fisher conduisirent dans les années 1980 à une valeur élevée de la constante de Hubble - de l'ordre de 100 km/s/Mpc - ainsi qu'à une croissance de H_0 avec la distance. Ces résultats proviennent de la nature statistique de la relation Tully-Fisher et du fait que les échantillons sont toujours limités en magnitude apparente.

Propriété statistique

A toutes les galaxies ayant la même vitesse de rotation \log V _{\mathrm{m}} (ou appartenant à une classe de sosies), on attribue la même magnitude absolue (ou luminosité) selon la relation linéaire :

M_0\ =\ a\ \log V _{\mathrm{m}} + b

Chaque détermination individuelle souffre en fait d'une imprécision due à l'écart entre la magnitude absolue exacte et la valeur moyenne M_0 adoptée. Si on considère maintenant un grand nombre d'objets, on détermine donc un ensemble de distances dont chacune est affectée d'une erreur, les unes étant surestimées, les autres sous-estimées. On espère cependant qu'elles soient exactes en moyenne.

Biais de Malmquist

K.G. Malmquist (1920) a montré que ce n'est pas le cas si l'échantillon utilisé est limité en magnitude apparente : l'échantillon contient alors en effet une plus grande proportion de galaxies intrinsèquement plus lumineuses que M_0, et une moins grande proportion de galaxies moins lumineuses. La magnitude absolue moyenne de l'ensemble des galaxies du catalogue n'est donc pas égale, mais inférieure à M_0.

Il s'ensuit qu'en sous-estimant ainsi la luminosité moyenne des galaxies observées, on sous-estime leurs distances, et l'on surestime la constante de Hubble.

Erreur statistique

Si on suppose que les galaxies sont réparties uniformément dans l'espace, l'erreur statistique sur la magnitude absolue \Delta M_0 et donc sur le module de distance des galaxies peut s'exprimer de manière simple en fonction de la dispersion \sigma du critère de distance (l'incertitude moyenne par rapport à M_0) :

\Delta M_0\ =\ 1.382\ \sigma^2

Pour une dispersion \sigma de l'ordre de 0.6 magnitude, typiquement ce que l'on obtient par la relation Tully-Fisher ou la méthode des sosies, cela donne sur le module de distance une erreur de - 0.5 magnitude. On obtient finalement sur la distance une sous-estimation de l'ordre de 23%, et une valeur de H_0 surestimée d'autant.


Simuler

Le biais de Malmquist

L'animation ci-jointe montre comment le biais de Malmquist dépend de la magnitude limite d'observation. Plus elle est élevée, moins le biais est important.

malmquistf.gif
Plus la magnitude limite d'observation augmente (courbe orange), mieux la distribution des cibles les moins lumineuses est perçue. Il s'ensuit une meilleure détermination de la magnitude absolue moyenne (courbe bleu ciel).
Crédit : ASM

S'exercer

exerciceLes galaxies sosies

Difficulté : ☆☆☆   Temps : 1 h

On se propose d'estimer la constante de Hubble et l'âge de l'univers en utilisant les sosies d'une galaxie bien connue : la galaxie d'Andromède (M31). Le tableau donne les paramètres d'une trentaine de galaxies sélectionnées dans la base de données extragalactiques LEDA selon les critères de morphologie (spirale), d'inclinaison ou de rapport d'axe 0.45 < \log r_{25} < 0.51 (r_{25} est le rapport du grand au petit axe, repéré à l'isophote de magnitude 25), vitesse de rotation (en km/s) dont le logarithme vérifie 2.35 < \log V _{\mathrm{m}} < 2.45, et avec un seuil en magnitude m _{\mathrm{b}} < 15.0. V _{\mathrm{m}} est le maximum de la vitesse de rotation dans le disque, et m _{\mathrm{b}} est la magnitude apparente dans la bande B.

La magnitude apparente de M31 (PGC 2557) vaut 3.20 ; sa distance, déterminée au moyen de céphéides observées par le télescope spatial Hubble, est estimée à 0.841 Mpc, ce qui représente un module de distance de 24.6 (avec la distance exprimée en Mpc, \mu = m - M = 5 \log d + 25). Le tableau fournit, pour chaque galaxie repérée par son numéro PGC : la magnitude apparente mb, une valeur corrigée m _{\mathrm{B, cor}}, le logarithme de la vitesse maximale de rotation de la galaxie (logv), et sa vitesse radiale héliocentrique (vrad).

application.png

Question 1)

Déterminer la magnitude absolue de M31. Quelle hypothèse fait-on sur les magnitudes absolues de ses sosies ?

Question 2)

Déterminer pour chaque galaxie son module de distance et en déduire la valeur de la constante de Hubble associée : \log H_0\ =\ \log V - (\mu -25)/5

Question 3)

Déterminer le module de distance mu2 par application de la relation de Tully-Fisher, avec les coefficients M = -5.8 \log V _{\mathrm{m}} - 8.0. En déduire une autre estimation de \log H_0.

Question 4)

Calculer dans chaque cas la moyenne des valeurs \log H_0 et en déduire une valeur de la constante de Hubble. Commenter.

Question 5)

Représenter les valeurs \log H_0 en fonction de la vitesse radiale pour les galaxies sosies de M31. Commenter.

Question 6)

Appliquer la correction de Malmquist et calculer la valeur corrigée de H_0. Comparer aux valeurs obtenues précédemment, par le module de distance ou par la relation Tully-Fisher.

Question 7)

Dans le modèle standard (\rho_0 = \rho _{\mathrm{c}} \mathrm{\ et\ } \Lambda = 0), l'âge de l'univers est égal à 2/3 du temps de Hubble t _{\mathrm{H}} = 1/ H_0. Calculer cet âge à partir des valeurs de H_0 obtenues précédemment. On rappelle que la constante est exprimée en km/s/Mpc.


Réponses aux exercices

pages_indicateur-secondaire/biais-malmquist-sexercer.html

Exercice 'Les galaxies sosies'