Le scénario standard: accretion des planètes telluriques

Auteur: Philippe Thébault

Condensation et accrétion des premiers grains

Le disque proto-planétaire se refroidit progressivement au cours du temps. A mesure que la température baisse, de plus en plus d’éléments peuvent se condenser. A moins de 1600K, ce sont des oxydes métalliques, à 1400K c’est le Fer, et, enfin, à 1300K, les silicates. La condensation forme initialement des grains très petits, de l’ordre de quelques microns. La croissance de ces grains se fait ensuite lors de collisions mutuelles, quand la vitesse d’impact est suffisamment faible pour qu’ils restent soudés. Pour des particules de si petites tailles, ce qui les fait « coller » les unes aux autres lors de collisions, ce sont les forces de surface moléculaire (forces de Van der Waals). Les vitesses et la fréquence des rencontres entre grains sont déterminées par le fait qu’ils sont couplés au gaz et que celui-ci a des mouvements turbulents. On pense que, pour une MMSN typique, les vitesses de collisions entre petits grains sont de l’ordre de 10cm/s à 10m/s (la vitesse d’un cycliste). Des expériences en laboratoire ont montré que ces vitesses sont effectivement suffisamment faibles pour permettre à 2 grains de s’accréter lors d’une collision. Ce processus d’accrétion grain à grain va former des particules filamenteuses de type fractal (cf. image), dont la taille peut atteindre quelques cm.

images/Cours-12-fractal-growth-seizinger.png
Structure fractale résultant de l’accrétion mutuelle de grains micrométriques
Crédit : simulations numériques de A. Seizinger, Université de Tübingen.

La barrière du mètre

La suite de l’histoire est beaucoup plus problématique. Quand les corps solides ont atteint quelques centimètres ou décimètres, les modèles de croissance par collisions mutuelles rencontrent un problème majeur, qu’on appelle pour simplifier « la barrière du mètre ». En effet, ces corps sont devenus suffisamment gros pour commencer à se découpler du gaz, et ce gaz va alors commencer à exercer une forte friction sur eux. Ceci a deux conséquences : 1) Les vitesses relatives de collisions impliquant ces objets deviennent élevées, et le bilan de ces collisions n’est plus l’accrétion mais l’érosion des corps, et 2) La friction du gaz fait perdre du moment cinétique au corps solides, et ceux ci vont se mette à spiraler vers le centre du disque et l’étoile. Pour des corps de 1m, on calcule que le temps de migration vers le centre est de seulement quelques centaines d’années dans une MMSN « standard ».

La barriere du métre
images/Cours-13-metre-barrier.png
Bilan des collisions mutuelles entre corps solides dans la nébuleuse solaire de masse minimale, déduites de diverses simulations numériques effectuées dans la dernière décennie. En abscisses : taille de l’impacteur. En ordonnées : taille de la cible. On voit très clairement que dès que l’un des corps dépasse le mètre, l’accrétion est quasiment impossible
Crédit : Observatoire de Paris

Passer la barrière du métre

Plusieurs théories ont été avancées pour expliquer comment surmonter la barrière du mètre. Certaines font appel à l’action de la turbulence du gaz et au fait que celle-ci crée des vortex au centre desquels les particules solides peuvent s’accumuler. Dans ces vortex, l’accrétion peut se remettre en marche pour 2 raisons: 1) les vitesses relatives sont suffisamment faibles pour que les particules « collent » à nouveau lors de collisions, et 2) La densité de grains solides au centre des vortex peut par ailleurs devenir telle qu’une instabilité gravitationnelle se déclenche, formant directement et rapidement des corps de plusieurs kilomètres. Dans le même ordre d’idée, d’autres scénarios envisagent que les grains sont piégés au niveau de singularités dans le disque de gaz, là où existe un très fort gradient de pression. Ces singularités peuvent se situer au bord de ce qu’on appelle des « Dead Zones » (sans activité magnétique), ou bien au niveau de la ligne des glaces, ou bien encore au niveau de surdensités créées par des Instabilités Magnéto-Hydrodynamiques (« MRI »). Dans ces zones de piégeage, l’accrétion peut se poursuivre pour les mêmes raisons que dans le scénario des « Vortex ».

images/Cours-14-zonalflow.png
Instabilité de « courant » dans un disque proto-planétaire (MMSN).

D’autres scénarios proposent une solution alternative, fournie par la physique des collisions elle-même. Si il existe une très large dispersion de la taille des corps solides, alors les plus gros de ces corps seraient capable d’accréter les plus petits, même en cas de vitesses relativement élevées. Dans le même ordre d’idée, même en cas de collisions érosives, les fragments érodés pourraient former une poussière facilement ré-accrétable par les plus gros corps.

Il faut cependant rester prudent, car aucun de ces scénarios ne propose pour l’instant une explication 100% satisfaisante. Ce problème est l’un des sujets majeurs de la recherche actuelle sur la formation planétaire.


L’accrétion « boule de neige » des planétésimaux

Malgré un enfantement qui pose pour l’instant beaucoup de problèmes aux théoriciens (voir page précédente), il est probable que des « planétésimaux », c’est à dire des corps solides de l’ordre du kilomètre, vont finir par se former dans le disque. Ces planétésimaux vont ensuite eux aussi croître par collisions mutuelles, mais le processus d’accrétion est radicalement différent de ce qu’il était pour les petits grains, car c’est maintenant la force de gravité qui va faire « coller » les corps les uns aux autres. Le critère pour qu’il y ait accrétion est que la vitesse de collision vcoll doit être inférieure à la vitesse de libération vlib des 2 corps impactant. Pour des corps de l’ordre du kilomètre, vlib est de l’ordre de quelques m/s, soit la vitesse d’un piéton (pressé).

Si tous les planétésimaux avaient la même taille et croissaient ensemble, alors il faudrait environ 1 million d’années pour former un corps de 1000km aux alentours de 1 UA. On pense cependant que le processus d’accrétion est en fait beaucoup plus rapide, et ce du fait de la dispersion en taille des planétésimaux. Si en effet certains planétésimaux sont initialement plus gros que les autres, alors leur vitesse de libération sera supérieure et ils auront tendance à dévier les autres corps vers eux. Ceci les fera grossir plus rapidement, donc acquérir une vlib encore plus élevée, et donc dévier encore plus les petits planétésimaux vers eux, et ainsi de suite. Le processus s’emballe donc de lui même, dans une sorte d’effet « boule de neige » (voir lien1 et lien2), qui va se maintenir tant que les vitesses de collisions restent petites, de l’ordre de ce qu’elles étaient initialement (c’est à dire quelques m/s). L’accrétion boule de neige est capable de former de gros corps en seulement quelques 104 ans, sachant qu’à ce moment une grande partie de la masse de solides est encore sous forme de planétésimaux kilométriques.

Cours-15-belt-dust-plan.jpg
Un disque de planétésimaux (Vue d’artiste).
Crédit : http://www.spitzer.caltech.edu

Accrétion «oligarchique»

Le processus d’accrétion « boule de neige » ne peut pas continuer éternellement. Il va s’arrêter quand les quelques corps en croissance rapide deviennent suffisamment gros pour commencer à exciter gravitationnellement leur environnement. A ce moment là, la croissance ne s’emballe plus, tout en se poursuivant cependant à un rythme élevé. On entre alors dans la phase dite « oligarchique » du processus d’accrétion, car seuls les quelques heureux embryons formés par effet de boule de neige sont en croissance. On pense que la transition entre accrétions « boule de neige » et « oligarchique » a lieu lorsque la taille des embryons est de l’ordre de quelques centaines de kilomètres. La phase oligarchique va alors durer de l’ordre de 105 ans, pour former des « embryons » planétaires de la taille de la Lune.


Epuisement des ressources: fin de l'accrétion oligarchique

Au cours des phases d’accrétion « boule de neige » puis oligarchique chaque embryon fait progressivement le « vide » autour de lui. Le disque est alors structuré en régions concentriques à l’intérieur desquelles un seul gros corps dominant a émergé. Chaque embryon peut accréter les planétésimaux se situant à l’intérieur de sa « zone d’alimentation », correspondant à tous corps dont l’orbite peut être déviée sur l’embryon par focalisation gravitationnelle (cf. lien). Schématiquement, cette zone d’alimentation correspond à un anneau circulaire centré sur l’embryon, dont la largeur augmente à mesure que l’embryon grossit. Cependant, comme la masse disponible à l’intérieur de la zone d’alimentation croît moins vite que le taux auquel cette masse est accrétée par l’embryon, on aboutit in fine à une situation où la zone d’alimentation est vide. A ce moment, la phase de croissance par accrétion de petits planétésimaux s’arrête. Dans la région des planètes telluriques, on peut calculer qu’à ce stade, des corps d’environ 1000km se sont formés (cf. page d’exercice)

images/Cours-17-Feeding-zone.png
Vidage de la zone d’alimentation autour d’un embryon planétaire en
Crédit : Philippe Thebault

Interaction entre embryos, phase finale de l'accrétion

Comme nous l’avons vu à la page précédente, l’accrétion boule de neige et oligarchique ne permet sans doute pas de former directement des planètes, mais s’arrête, par épuisement de la matière (planétésimaux, poussière, etc …) à accréter, lorsque des embryons planétaires de la taille de la Lune ont été formés. Heureusement (si, du moins, on considère l’apparition de planètes comme un bien), ces embryons sont alors devenus suffisamment massifs pour se perturber mutuellement à distance. Ces perturbations vont rendre leurs orbites excentriques, et celles-ci vont pouvoir se croiser. Ces collisions entre embryons vont se faire à vitesses élevées, mais les embryons sont maintenant suffisamment massifs pour que l’accrétion mutuelle soit possible même lors d’impacts assez violents.

Ce « jeu de quilles » entre embryons va durer quelques millions, voire quelques dizaines de millions d’années. A la fin de cette période extrêmement violente, la plupart des milliers d’embryons formés par l’accrétion oligarchique ont disparu. Ils ont été soit éjectés du système solaire, soit (pour la plupart) accrétés par les quelques heureux gagnants qui vont devenir les planètes que nous connaissons aujourd’hui.

Notons que, dans les régions internes du système solaire, ces planètes ne vont jamais devenir suffisamment massives pour pouvoir accréter le gaz qui est encore présent dans le disque. On verra qu’il en va tout autrement dans la région des planètes géantes (cf. lien).

Cours-18-Embryo-Collision.jpg
Vue d’artiste d’une collision entre 2 embryons massifs.
Crédit : http://www.spitzer.caltech.edu

formation de la lune

Les datations isotopiques indiquent que la Lune s’est formée entre 30 et 200 millions d’années après la Terre. Ceci place la formation de la Lune vers la fin de la phase agitée de collisions entre embryons planétaires (cf. page précédente). Les modèles récents postulent d’ailleurs que la formation de la Lune est due à un impact géant entre la proto-Terre et une autre proto-planète, appelée « Theïa », peut-être de la taille de Mars. Dans le modèle « standard » de Robin Canup (cf. image), Theïa impacte la Terre à vitesse élevée et est détruite ; un nuage de débris extrêmement chauds, essentiellement formé du manteau de Theïa se forme en orbite autour de la proto-Terre (qui est partiellement détruite par l’impact mais survit cependant), la Lune s’accrète ensuite à partir de cet anneau de débris en refroidissement. Un tel impact expliquerait plusieurs des caractéristiques peu banales de la Lune : 1) La Lune est très pauvre en fer comparée à la Terre. 2) Elle est également très pauvre en éléments volatiles (H20, Azote, CO2, etc…), 3) le timing pour la formation, 4) le moment angulaire très élevé du couple Terre-Lune.

images/Cours-19-earthmoon-Canupmodel.jpg
Simulation numérique de l’impact Terre-Theia ayant donné naissance à la Lune.
Crédit : Robin Canup (Southwest Research Institute)

Des analyses récentes d’échantillons lunaires ont cependant mis en évidence un problème majeur avec cette théorie : le fait que la surface de la Lune ait la même composition isotopique que la Terre pour les éléments O, Ti, Cr, W et K. Ceci n’est pas possible si la Lune est pour l’essentiel constituée de matière « theïenne », dont la composition isotopique a a priori peu de chances de ressembler à celle de la Terre, car étant probablement formée ailleurs dans le système solaire. Pour tenter de résoudre ce paradoxe, plusieurs modèles récents ont exploré différentes théories. Il est possible par exemple que le disque de débris post-impact ait été tellement chaud et dense qu’un équilibre isotopique avec la composition terrestre s’est fait. Il est possible également que la Terre et Theïa aient une origine commune. Alternativement, un impact plus énergétique (appelée « hit and run ») pourrait également arracher plus de matière à la Terre et faire que le disque de débris pré-lunaire soit dominé par de la matière terrestre. Enfin, si la rotation sur elle-même de la proto-Terre était initialement extrêmement rapide, alors l’impact avec Theïa aurait pu arracher énormément de matière du manteau terrestre pour former le disque pré-lunaire. Toutes ces théories ont leurs avantages et leurs défauts, mais on peut remarquer qu’aucune d’entre elles ne remet en cause le fait que la Lune se soit formée à partir d’un impact Terre-Theïa.


Et le gaz dans tout ça? Dispersion du disque primordial

Toutes les étapes de formation dont nous venons de parler se font dans un disque protoplanétaire dont l’essentiel de la masse est encore sous forme de gaz primordial (surtout de l’hydrogène). Les grains et les planétésimaux en croissance interagissent très fortement avec ce gaz et nous avons vu que ce gaz est sans doute essentiel pour que l’accrétion des plus petits grains puisse se faire.

Ce disque de gaz primordial n’est cependant pas éternel. L’observation des jeunes étoiles montre en effet que les disques proto-planétaires primordiaux se dispersent sur des échelles de temps comprises entre 1 et 10 millions d’années, la durée de vie moyenne étant sans doute de l’ordre de 3 millions d’années pour une étoile de type solaire. Ceci place la dispersion du disque sans doute au cours de la phase finale d’interactions mutuelles entre gros embryons (cf. lien).

Reste à expliquer pourquoi et comment le disque se disperse. Il existe pour cela plusieurs mécanismes possibles, comme par exemple le vent stellaire de l’étoile en phase T-Tauri, ou l’accrétion visqueuse du disque sur l’étoile. La cause la plus probable semble cependant être l’effet de « photo-évaporation » dû au rayonnement ultra-violet de la jeune étoile, qui, couplé à la viscosité du disque, est capable de disperser très rapidement le disque de gaz hydrogène après l’avoir « coupé » en deux (voir PHOTO-EVAPORATION).

images/Cours-20-discfraction-roccatagliata.png
Proportions d’étoiles étant entourées de disques proto-planétaires massifs, dans différents amas stellaires ayant des âges différents.
Crédit : Roccatagliata et al., 2011, (the Astrophysical Journal).