Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Habitabilité

Des températures propices à l'eau liquide et à la vie

Auteur: Martin Turbet
Flux d'énergie reçue sur Terre
earth_flux.jpg
Moyenne annuelle du flux géothermique et du flux solaire absorbé reçus sur Terre. Le flux géothermique moyen est de 8.10-2 W/m2 alors que le flux solaire absorbé moyen est de 240 W/m2.
Crédit : J.H. Davies et J. Michaelsen

Tout corps chaud se refroidit avec le temps en émettant un rayonnement thermique. Au premier ordre, la puissance rayonnée par un corps ne dépend que de sa température et de sa surface.

Sur Terre, les conditions de température et de pression sont idéales pour conserver de l'eau liquide à la surface. Pour compenser le refroidissement de la surface terrestre et de ses océans par émission thermique, il faut une source extérieure d'énergie. Par le haut de l'atmosphère, c'est le flux solaire. Par le bas, c'est le flux géothermique. En pratique c'est le flux solaire qui domine par plus de 3 ordres de grandeur les autres sources d'énergie dans le bilan radiatif terrestre.

Le flux stellaire

En premier lieu, c'est donc le flux stellaire reçu par une planète qui va dicter si oui ou non la planète va être capable de garder de l'eau liquide à sa surface. Si la planète est trop proche de son étoile, la température de la planète sera trop élevée pour conserver de l'eau dans son état liquide. Si la planète est trop loin de son étoile, ou voire même si la planète est seule, sans étoile - on l'appelle dans ce cas "planète flottante" -, elle ne recevra alors plus suffisamment d'énergie pour conserver la température minimale nécessaire au maintien d'eau liquide à sa surface.

Note : La photosynthèse - mécanisme essentiel pour la vie - est alimentée par le flux solaire.

Le flux géothermique

Sur Terre, le flux géothermique est en moyenne 3000 fois plus faible que le flux solaire. Pourtant, sur d'autres corps, il peut être beaucoup plus important. Sur Io, un satellite de Jupiter encore volcaniquement actif, le flux géothermique moyen est 25 fois plus élevé que sur Terre. Ceci est dû aux forces de marée gravitationnelle exercées par Jupiter sur Io qui, par friction, réchauffent l'intérieur du satellite. Il est donc possible que, dans certaines configurations, le flux géothermique joue un rôle important dans le bilan radiatif d'une planète/lune et donc sur son habitabilité.

Note : Si une exoplanète reçoit un flux stellaire trop faible pour alimenter la photosynthèse, il est possible que d'autres mécanismes prennent le relais. C'est en particulier le cas de la vie chimiolithotrophique, qui puise son énergie des sources hydrothermales.

L'effet de serre de l'atmosphère

La composition et l'épaisseur de l'atmosphère d'une planète jouent également un rôle prépondérant dans son bilan radiatif. En particulier, la présence de gaz à effet de serre contribue généralement à l'augmentation de la température de surface d'une planète. Un gaz à effet de serre a en effet la propriété particulière d'être quasi-transparent dans le domaine du visible (là où la majorité du flux solaire est émis), mais très absorbant dans le domaine de l'infrarouge (qui correspond au domaine du rayonnement thermique de la planète). Les gaz à effet de serre, chauffés par cette absorption, émettent eux aussi un rayonnement thermique dont une partie est captée par la surface, contribuant à son réchauffement. (Plus d'informations dans ce cours)

Sur Terre, les principaux gaz à effet de serre sont l'eau (H_2O), le dioxyde de carbone (CO_2), le méthane (CH_4), ou encore l'ozone (O_3). Néanmoins, notre expérience dans le Système Solaire prouve qu'il existe en fait toute une variété de compositions atmosphériques possibles : l'atmosphère de Jupiter est composée essentiellement de dihydrogène (H_2) et d'hélium (He) ; celle de Vénus essentiellement de CO_2 ...

Ce qu'il faut retenir des gaz à effet de serre : Une planète très proche de son étoile doit posséder peu de gaz à effets de serre pour conserver de l'eau liquide à sa surface alors qu'une planète très éloignée doit en avoir en grandes quantités !

Page précédentePage suivante