L'étude de la stabilité des points de Lagrange n'est pas simple. Il est bienvenu d'exprimer le lagrangien du système, et de faire une analyse par perturbation... ce qui est hors de la portée de ce cours.
Les figures ci-jointes, réalisées par des étudiants du Master professionnel Outils et Systèmes de l'Astronomie et de l'Espace lors d'un projet d'analyse numérique, dévoilent la complexité de l'analyse.
Les astéroïdes troyens sont sur la même orbite que Jupiter, soit en avance de sur Jupiter (point L4), soit en retard de (point L5).
Pour observer continûment le Soleil, le point L1 est idéal. Il tourne autour du Soleil avec la Terre, avec le Soleil en permanence d'un côté et la Terre au côté opposé. C'est donc en L1 qu'a été logiquement installée la sonde SOHO, dédiée à l'observation du Soleil.
En revanche, s'il s'agit d'observer l'Univers froid, mission du satellite Planck, c'est le point L2 qui est idéal. Il tourne avec la Terre, avec le Soleil et la Terre en permanence opposés à la direction de visée. C'est donc en L2 qu'est installé Planck, et que sera le télescope spatial JWST, successeur de Hubble.
L'étude de la stabilité dynamique autour de L4 ou L5 relève d'une approche numérique. Cette dernière montre que le rapport des deux masses doit être assez élevé (contraste plus grand que ) pour permettre la stabilité.
C'est la force de Coriolis, qui apparaît dans le référentiel tournant, qui stabilise les objets autour de L4 ou L5. Elle correspond à une accélération :
avec la vitesse angulaire de rotation, perpendiculaire au plan orbital des deux corps massifs, et la vitesse relative dans le référentiel tournant. Ce rôle stabilisateur est très brièvement illustré en exercice.
Comme L4 et L5 sont dynamiquement stables, on y trouve de nombreux objets.
Difficulté : ☆☆ Temps : 45 min
Représenter l'allure du potentiel gravitationnel local autour de L4 dans le référentiel tournant avec les 2 corps, sachant qu'il y présente un maximum.
Montrer que toute composante de vitesse s'éloignant radialement de L4 donne un terme de Coriolis conduisant à un mouvement de rotation autour de L4.
Montrer que toute composante de vitesse orthoradiale autour de L4 conduit à un terme de Coriolis radial. Déterminer le seul sens de rotation possible pour une orbite stable.
pages_points-lagrange/stabilite-dynamique-sexercer.html
Tracer une coupe selon une direction, puis l'autre, sachant que L4 est un sommet
Le potentiel est d'allure parabolique. L4 est un maximum.
L'allure de la courbe de potentiel est :
Munir le plan orbital d'un repère cartésien s'appuyant sur L4, et donner la direction du vecteur rotation par rapport à ce plan
La composante de Coriolis s'écrit .
Etant perpendiculaire à la rotation, elle est nécessairement dans le plan orbital. Etant également perpendiculaire au mouvement, supposé radial, elle est nécessairement orthoradiale : elle va induire un mouvement de rotation autour de L4.
Il est nécessaire que cette composante de vitesse, radiale, soit de plus dirigée vers L4.
La composante de Coriolis s'écrit .
Toujours perpendiculaire à la rotation, elle reste nécessairement dans le plan orbital. Etant également perpendiculaire au mouvement, supposé orthoradial, elle est nécessairement radiale.
Afin que cette composante radiale agisse telle une force de rappel vers L4, un seul sens de rotation est possible : vérifier qu'il s'agit d'une rotation dans le même sens que la rotation orbitale.