Observer les amas en rayons X |
Comme les rayons X ne traversent pas l'atmosphère terrestre, il a fallu attendre les observations par satellite pour observer le ciel dans ce domaine de longueur d'onde à la fin des années 1960. Les amas de galaxies ont alors été détectés, à commencer par l'amas Coma, qui est riche, massif, et donc brillant en X.
Depuis lors plusieurs générations de télescopes X de plus en plus performants se sont succédé, avec à chaque nouvelle génération un progrès considérable dans les performances de l'instrument.
Les trois caractéristiques principales que l'on cherche sans cesse à améliorer sont : la sensibilité (ou la surface collectrice), la résolution spatiale et la résolution en énergie (terme utilisé en rayons X à la place du terme de résolution spectrale employé dans d'autres domaines de longueur d'onde). Comme il n'est pas possible d'optimiser ces trois propriétés à la fois, des choix technologiques doivent être faits pour privilégier l'une de ces caractéristiques par rapport aux deux autres.
Depuis dix ans, trois satellites observent le ciel en rayons X, avec des propriétés très complémentaires. En effet, le satellite européen XMM-Newton a une grande surface collectrice qui lui permet d'observer des objets faibles ; en revanche sa résolution spatiale est au mieux de 5 secondes d'arc et sa résolution en énergie est moyenne (sauf pour le spectrographe RGS à haute résolution, mais qui n'a pas de résolution spatiale). Le satellite américain Chandra (ainsi nommé en hommage au grand astrophysicien indien Chandrasekhar), lui, possède au contraire une excellente résolution spatiale de l'ordre de 1 seconde d'arc ; par contre il ne couvre qu'un champ assez petit, et sa sensibilité et sa résolution en énergie sont moyennes. Enfin le satellite japonais Suzaku privilégie une excellente résolution en énergie au détriment de la résolution spatiale, inexistante.