Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Instrumentation

apprendreApprendre

prerequisPrérequis

Loi de probabilité ; éléments de statistique

Définition

Le théorème de la limite central implique qu'un bruit résultant de l'action indépendante de différents facteurs physiquesobéit à la loi de probabilité, dite loi normale :

f(x) \ = \ {1\over \sqrt{2\pi}\sigma}\ \exp \left[ -{(x-\mu)^2\over 2 \sigma^2} \right]

avec \mu la moyenne et \sigma l'écart-type. Un tel bruit est dit gaussien.

Écart à la moyenne

Pour une loi gaussienne, la probabilité d'observer un signal s'écartant de \pm n\ \sigma par rapport à la valeur moyenne décroît rapidement avec n ; 99.7 % des réalisations du signal s'écartent de moins de 3\ \sigma de la moyenne.

n 1 2 3 4
% 69.295.499.799.99

Probabilité d'avoir une valeur dans l'intervalle [-n\ \sigma, \ n \ \sigma] pour un bruit gaussien.

Détection d'un signal ?

De ce qui précède, peut-on dire qu'un événement qui s'écarte de plus de 3\ \sigma de la moyenne est sûrement dû à un signal et non à un bruit, et l'identifier comme tel ?

On considère une détection sûre lorsqu'elle dépasse un seuil de 4 ou 5 fois l'écart-type. Mais, la difficulté réside souvent dans le fait que la nature d'un bruit n'est pas exactement gaussienne, ou que des signaux parasites non identifiés compliquent l'interprétation d'un signal.

Analyse en fréquence d'un bruit gaussien

L'analyse fréquentielle d'un bruit gaussien ne montre aucune composante privilégiée. Pour cette raison, on parle d'un bruit blanc.

bruit1fspectre.png
Page précédentePage suivante