Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Instrumentation

observerObserver

image 1image 2image 3
centralimite.gif
Addition de N\ (=\ 1,\ 2,\ 3 ,\ 10\mathrm{\ ou\ } 100) variables indépendantes, obéissant à une loi de distribution uniforme (entre 0 et 1). Lorsque N augmente, la distribution tend vers une loi gaussienne de moyenne N/2 et écart type \sqrt{N/2} (courbe rouge). Pour N=1, la distribution reste bien sûr uniforme, pour N=2 elle garde une allure triangulaire.
Crédit : ASM

Conséquence du théorème de la limite centrale

La superposition de plusieurs variables aléatoires indépendantes les unes des autres conduit à une loi normale. C'est l'une des conséquences du théorème de la limite centrale. L'animation ci-jointe en montre un exemple.

Distribution gaussienne

Exemples de distributions gaussiennes.

Bruit gaussien

Si un bruit est gaussien, la probabilité qu'il s'écarte de plus ou moins 3\sigma de la valeur moyenne est très faible. Cette propriété est mise à profit pour identifier le signal du bruit, mais ne marche que si le bruit est vraiment gaussien.

Page précédentePage suivante