Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Masse

sevaluerS'évaluer

calcotron

exerciceLimite de détection

Difficulté : ☆☆☆   Temps : 45 min

Un exercice précédent a montré que la vitesse réflexe de l'étoile dépend de la masse et de l'orbite de la planète via la relation :

a\ =\ {1\over V _{\mathrm{\parallel}}^{2}}{{\cal G}\over M}(m\sin i)^{2}

Un graphe (m\sin i - rayon orbital a) est utile afin de déterminer quel type de planète est détectable par vélocimétrie Doppler. La masse M de l'étoile étant de l'ordre d'une masse solaire, le champ de planètes détectables dépend essentiellement de la sensibilité des instruments de recherche.

msinia00.png
Données numériques
objetmasse (kg)
Soleil2\ 10^{30}
Jupiter2\ 10^{27}
la Terre6\ 10^{24}
1 UA150\ 10^6 km
Question 1)

Les mesures en 2000 atteignaient une précision en vitesse de l'ordre de 10 {\,\mathrm{m\,s}}^{-1}. En déduire la relation numérique entre les variables m\sin i et a correspondant à la limite de détection, et pour une étoile d'une masse solaire. Exprimer le résultat en UA et M _{\mathrm{J}}.

Aide [3 points]

Question 2)

Reporter la relation trouvée sur le diagramme masse-distance, avec comme unités la masse de Jupiter pour m, et l'unité astronomique pour a. Quelles planètes de notre système solaire sont détectables au vu de cette ancienne performance de 10 {\,\mathrm{m\,s}}^{-1}) ?

Aide [3 points]

Question 3)

Même question, si l'on parvient à détecter des amplitudes en vitesse de 1 {\,\mathrm{m\,s}}^{-1}.

[1 points]

Question 4)

Montrer que Saturne, de période orbitale sidérale de l'ordre de 30 ans, ne pourrait tout de même pas être détecté avant l'année 2025.

Aide [1 points]

Question 5)

Montrer que cette technique d'observation comporte un biais, car elle favorise la détection de planète ayant des paramètres orbitaux particuliers.

[1 points]

Page précédentePage suivante