Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Masse

sexercerS'exercer

exosini1.png

qcmQCM

1)  Un système présente l'orientation suivante. Dans quel cas le signal Doppler sera-t-il maximal ?



2)  On détecte par la méthode des vitesses radiales un signal Doppler fixé. Dans quel cas la masse de la planète perturbatrice est la plus grande ?




 
calcotron

exerciceLe paramètre m sin i

Difficulté : ☆☆   Temps : 20 min

On s'intéresse à la distribution du facteur multiplicatif \sin i qui intervient dans la détermination de la masse m \sin i.

Question 1)

Rappeler la définition de l'angle \i.

AideSolution

Question 2)

Statistiquement, trouve-t-on plus de systèmes avec i=0 ou bien i = \pi/2 ?

AideAideSolution

Question 3)

Montrer, en faisant un schéma, que la probabilité de voir un système sous une inclinaison i est proportionnelle à \sin i.

AideSolution

Question 4)

Calculer la valeur moyenne de \sin i.

AideSolution

calcotron

exerciceLa vélocimétrie Doppler

Difficulté : ☆☆   Temps : 45 min

Cette technique permet la détection de planètes, via la perturbation en vitesse (vitesse réflexe) qu'elles induisent sur leur étoile.

On observe un système constitué d'une planète de masse m, en orbite circulaire autour d'une étoile de masse M. La composante de vitesse de l'étoile V _{\mathrm{\parallel}}, parallèle à l'axe de visée, ainsi que la période de rotation du système découlent de l'observation. La masse M de l'étoile est supposée connue.

Schéma du système
figexdop.png
On note respectivement G, P et E les positions du barycentre du système, du centre de masse de la planète et du centre de masse de l'étoile.
Crédit : ASM
Question 1)

Définir la position du barycentre du système étoile-planète.

Montrer que, dans le référentiel barycentrique, les vitesses V de l'étoile et v de la planète satisfont à la relation :

M{\mathbf V} + m{\mathbf v} = {\mathbf 0}

AideAideSolution

Question 2)

Donner la relation liant V _{\mathrm{\parallel}} au module V de la vitesse de l'étoile et à l'angle i entre l'axe de visée et la normale au plan de rotation du système. Faire un schéma.

AideSolution

Question 3)

Exprimer la 3ème loi de Kepler en fonction des variables T et v, puis montrer que la masse de la planète s'exprime en fonction des observables T et V _{\mathrm{\parallel}} par :

m\sin i = V _{\mathrm{\parallel}}\left({M^{2}T\over 2\pi {\cal G}}\right)^{1/3}

Solution

Question 4)

Quelle information inédite apporte cette relation?

AideSolution

Question 5)

Substituer à l'observable T la variable a, et montrer que l'on aboutit à l'égalité suivante entre les variables a et m\sin i :

a = {1\over V _{\mathrm{\parallel}}^{2}}{{\cal G}\over M}(m\sin i)^{2}

AideSolution

Page précédentePage suivante