Les limites de la relativité galiléenne |
Ce système simple va vivre pendant plus d'un siècle et la mécanique céleste va décrire merveilleusement la dynamique du système solaire jusqu'à ce que deux grains de sable se glissent dans la machine. L'un sera l'inexplicable excès de l'avance du périhélie de Mercure. La mécanique classique sera impuissante devant ce problème. L'autre viendra de la découverte de l'électromagnétisme. En 1873, J. Maxwell (1831-1879), physicien écossais, publie les équations générales des champs électromagnétiques, dites "équations de Maxwell". On constate alors que ces équations ne sont pas invariantes. Effectivement, la composition des vitesses ne fonctionnent pas avec la vitesse de la lumière qui ne dépend pas de la vitesse de la source (cela se remarquerait lors de l'observation des étoiles doubles) et ne peut être composée avec une autre vitesse. Serait-ce dû à l'existence d'un "éther" dans lequel la lumière se déplace par vibration ? On chercha alors à déceler un mouvement par rapport à l'éther. En particulier, on devait pouvoir mesurer la vitesse d'un mobile en mesurant les modifications des lois physiques entraînées par le déplacement. Ce fut alors la célèbre expérience de Michelson qui consiste à mesurer la vitesse de la lumière dans deux directions perpendiculaires. Cette expérience fut faite en divers lieux, à 6 mois d'intervalle (la vitesse de la Terre change de sens) pendant des dizaines d'années et jamais on ne trouva un changement dans la vitesse de la lumière. Le mouvement de la Terre était indétectable avec cette méthode. Les équations de Maxwell étaient-elles fausses ? En fait non, c'était la transformation galiléenne qui n'était pas correcte. H. Poincaré montra que les équations de Maxwell étaient invariantes si on leur appliquait une transformation particulière, dite "transformation de Lorentz".