Interférences et spectrométrie

Auteur: Benoît Mosser

Introduction

Analyser spectralement la lumière est à la base de l'astrophysique. Cette section a pour but de rappeler quelques principes de physique permettant une analyse spectrale efficace. L'instrumentation nécessaire s'appuie sur le réseau de diffraction, bien plus efficace pour disperser la lumière qu'un prisme. Mais la mise en oeuvre du réseau nécessite un environnement précis.

solarspectrum.jpg
Le spectre solaire à haute résolution spectrale, obtenu avec un spectromètre échelle. Les couleurs comme l'aspect du spectre résultent d'un traitement d'image complexe.
Crédit : NOAO

Résolution spectrale


Observer

spectro1.png
Spectre stellaire visible théorique à diverses résolutions spectrales ( {\cal R} = 100,\ 500,\ 2500). La luminosité par intervalle spectral (unité arbitraire) est inversement proportionnelle à la résolution.
Crédit : ASM
resol1.png
Échantillon d'un spectre stellaire observé à diverses résolutions spectrales ( {\cal R} = 3000,\ 10000,\ 30000,\ 100000,\ 300000), avec renormalisation du flux.
Crédit : ASM

Résolution spectrale

Plus la résolution d'un spectre stellaire théorique est élevée :


Apprendre

objectifsObjectifs

Définir les notions de résolution spectrale : élément de résolution ; pouvoir de résolution ; intervalle spectral élémentaire.

Le pouvoir de résolution

Le pouvoir de résolution spectrale mesure la capacité à distinguer deux longueurs d'onde différentes \lambda et \lambda+\delta \lambda. Il est mesuré par la quantité :

{\cal R} \ = \ {\lambda\over \delta\lambda}

Le pouvoir de résolution est d'autant plus élevé que l'élément de résolution \delta\lambda (également appelé résolution spectrale élémentaire ou élément spectral) est petit.

Conversions

Le pouvoir de résolution peut être exprimé avec les diverses grandeurs spectrales (longueur d'onde \lambda, fréquence \nu) :

{1\over {\cal R}} \ = \ {\delta\lambda\over \lambda} \ = \ {\delta\nu\over \nu}

Il peut également être traduit en une vitesse, via l'équivalent Doppler:

{1\over {\cal R}} \ = \ {\delta\lambda\over \lambda} \ = \ {v\over c}

raievitesse.png
Raie stellaire représentée en fonction de la longueur d'onde ou de la vitesse repérée par rapport au centre de la raie.
Crédit : ASM
Diverses résolutions
InstrumentPouvoir de résolution typique\delta\lambda @ 500 nm (nm) vitesse (km/s)
Prisme500 1 600
Réseau5000 0.1 60
Réseau blazé500000.016

demonstrationDémonstration

La justification de ce qui précède procède en 2 étapes :


Simuler

Le doublet du sodium
simures.gif
Le doublet jaune du sodium du spectre solaire, simulé à diverses résolutions spectrales.
Crédit : ASM

Résolution variable

Selon la résolution spectrale, des raies bien marquées, comme celles du sodium à 589.0 et 589.6 nm, apparaîtront plus ou moins clairement, avec l'identification de raies fines entre les 2 éléments du doublet, ou bien noyées dans le flux continu.


S'exercer

qcmQCM

1)  La mesure de la largeur de raies larges de 6 km/s nécessite un spectromètre de pouvoir de résolution :



2)  Sur combien d'éléments spectraux est découpé le spectre visible d'une étoile, étudié entre 450 et 550 nm à la résolution de 10000 ?



3)  Pour obtenir un pouvoir de résolution spectrale de 10000 dans un intervalle de 100 nm aux alentours de 1000 nm, il faut collecter le spectre sur un nombre d'éléments spectraux de l'ordre de



exerciceRésolution et variable spectrale

Difficulté :    Temps : 10 min

Un spectromètre assure un pouvoir de résolution 25 000 dans le visible à 500 nm.

Question 1)

Déterminer la largeur d'un élément spectral élémentaire.

Question 2)

Le spectromètre en question, par transformée de Fourier, travaille en unité de nombre d'onde, exprimée en \mathrm{cm}^{-1}. Exprimer le nombre d'onde \sigma= 1/\lambda et la résolution \delta\sigma dans ce système d'unité.

exerciceQuelle résolution ?

Difficulté :    Temps : 20 min

Le spectre ci-joint (voir l'appliquette) a été enregistré aux alentours de 440.5 nm. Il s'agit d'estimer sa résolution, en fait limitée par la résolution instrumentale.

application.png

Question 1)

Vaut-il mieux effectuer la mesure sur une raie fine ou une raie large ?

Question 2)

Estimer alors la résolution instrumentale


Le réseau : diffraction et interférences


Apprendre

prerequisPrérequis

Même s'il reprend les bases théoriques, ce cours suppose que le réseau a déjà été étudié en physique. Un réseau est alimenté en faisceau parallèle par une fente source, et en donne une série d'images colorées.

objectifsObjectifs

Caractériser les interférences constructives d'un réseau ; voir la distribution de l'énergie dans la figure d'interférence.

fentereseau.png
Le réseau donne une série d'images colorées de la fente source.
Crédit : ASM
reseauschema.png
Paramètres du réseau, et définition des angles des faisceaux incident et diffracté.
Crédit : ASM
devreseau.png
À incidence nulle, la différence de marche entre 2 rayons consécutifs, vaut \delta = p \sin i'. Elle correspond au déphasage \varphi = 2\pi \ p/ \lambda \sin i.
Crédit : ASM

Interférences constructives

On note p la période du réseau, N le nombre de traits, \lambda la longueur d'onde étudiée. La condition d'interférences constructives s'écrit :

\sin i \pm \sin i' \ = \ m\ {\lambda \over p}

avec m, entier, l'ordre d'interférence. Le signe - dans cette relation concerne un réseau par transmission, le signe + un réseau par réflexion. C'est ce dernier cas qui nous intéresse, car il correspond au cas du réseau blazé.

Cette condition rend compte que le déphasage \varphi entre les amplitudes complexes issues de 2 traits consécutifs, vaut 2m\pi (ou bien, de façon équivalente, que la différence de marche vaut m\lambda).

diffracinterf.png
Les interférences se construisent principalement dans le lobe principal de la tache de diffraction d'une fente du réseau (en rouge).
Crédit : ASM

Le rôle de la diffraction puis des interférences

La diffraction par une fente du réseau détermine les différentes directions vers lesquelles la lumière est envoyée, chacun des fentes du réseau se comportant comme une source secondaire.

Les interférences entre ces différentes sources secondaires construisent les franges d'interférences, d'autant plus fines que le réseau comporte un nombre important de traits (cf. calcul de l'intensité de la figure d'interférence).

reseauinterf.png
Représentation des numérateur (bleu ciel) et dénominateur (violet) de l'intensité diffractée par le réseau (en bleu). Les pics d'interférence apparaissent pour chaque annulation du terme \sin \varphi/2 du dénominateur. La finesse des pics d'interférence augmente avec le nombre de traits N.
Crédit : ASM
somreseau.png
Sommation des différentes amplitudes.
Crédit : ASM

Intensité de la figure d'interférence

L'intensité de la figure d'interférence est issue du double effet de la diffraction par une seule fente et des interférences par N fentes. On s'intéresse dans un premier temps au phénomène d'interférence seul. On note \varphi le déphasage entre 2 fentes consécutives, et A_1 l'amplitude complexe. On mène les calculs dans l'approximation de Fraunhofer, pour montrer que l'intensité diffractée vaut :

I_N\ =\ \ |A_1|^2 \left({ \sin N\varphi/2 \over \sin \varphi/2 }\right)^2

demonstrationDémonstration

La sommation des amplitudes conduit à :

A_N\ =\ \sum_{k=1}^{k= N} A_1 \ \exp i (k-1)\varphi \ =\ A_1 \ \sum_{k=0}^{k= N-1}\ \bigl(\exp i\varphi \bigr)^k

Le traitement de la somme des termes d'une suite en progression géométrique donne :

A_N\ =\ A_1 \ { 1 - \exp i N\varphi \over 1 - \exp i \varphi}

On calcule l'intensité en factorisant le numérateur et le dénominateur par l'exponentielle complexe de l'angle moitié (de module unité), pour aboutir à :

I_N\ =\ |A_N|^2 \ =\ |A_1|^2 \ \left|{ \exp (i N\varphi/2) - \exp (-i N\varphi/2) \over \exp (i \varphi/2) - \exp (-i \varphi/2) }\right|^2 \ =\ |A_1|^2 \left({ \sin N\varphi/2 \over \sin \varphi/2 }\right)^2

Le terme d'intensité est important uniquement lorsque le dénominateur s'annule. Dans ce cas, le numérateur s'annule également et, par continuité du rapport, le pic d'intensité tend vers N^2. Chaque pic correspond à un ordre d'interférence. La largeur de ce pic est donnée par les variations du numérateur, qui oscille N fois plus rapidement que le dénominateur ; elle est donc N fois inférieure à la largeur entre 2 ordres consécutifs.

Inefficacité du réseau par transmission

L'inconvénient du réseau par transmission ici décrit est qu'il n'est a priori pas efficace : l'essentiel de l'énergie passe dans l'ordre 0, inintéressant pour la dispersion. Un concept technologique spécifique pare cet inconvénient : le réseau blazé.


Le réseau de diffraction : dispersion


Observer

reseauordre.png
Variation de l'angle de dispersion en fonction de l'ordre d'interférence.
Crédit : ASM

Dispersion du réseau / ordre d'interférence

La déviation des ordres diffractés par le réseau dépend de l'ordre d'interférence.

reseaucoul.png
Variation de l'angle de dispersion en fonction de la couleur de l'onde plane monochromatique incidente.
Crédit : ASM

Dispersion du réseau / couleur

La déviation des ordres diffractés par le réseau dépend de la longueur d'onde de l'onde plane incidente.

reseaupas.png
Variation de l'angle de dispersion en fonction du nombre de traits du réseau, donné en traits par millimètre, l'ordre (ici m = 1) et la longueur d'onde étant fixés.
Crédit : ASM

Dispersion / pas du réseau

La déviation des ordres diffractés par le réseau dépend du pas du réseau (ou nombre de traits par millimètre).


Apprendre

prerequisPrérequis

Etude du réseau en physique.

objectifsObjectifs

Caractériser la dispersion d'un réseau, càd sa capacité à distinguer les différentes couleurs.

Relation du réseau

Rappel : la condition d'interférences constructives s'écrit :

\sin i \pm \sin i' \ = \ m\ {\lambda \over p}

avec m l'ordre d'interférence (entier), p le pas du réseau, \lambda la longueur d'onde d'étude.

Dispersion angulaire

La dispersion angulaire relie, à incidence i fixée, les variations de l'angle de sortie i' avec \lambda. Elle est obtenue par différentiation de la relation du réseau :

{ {\mathrm{d}} i' \over {\mathrm{d}}\lambda} = {m\over p \cos i'}

La dispersion {\mathrm{d}} i' / {\mathrm{d}}\lambda croît avec l'ordre m et la fréquence spatiale du réseau 1/p. La résolution {\mathrm{d}}\lambda dépend des paramètres du réseau, mais aussi de la précision {\mathrm{d}} i' avec laquelle on peut déterminer l'angle i'.

reseaupics.png
Les ordres d'interférences des différentes couleurs progressent d'autant plus vite que la longueur d'onde est petite. Très rapidement, les différents ordres des différentes couleurs se mêlent.
Crédit : ASM

Ordres d'interférences

A couleur fixée, mais ordre d'interférence m variable, la différentiation de la relation constitutive du réseau s'écrit :

\cos i' {\mathrm{d}} i'\ =\ {\lambda \over p}\ {\mathrm{d}} m

Un pas d'interférence, correspondant à \Delta m\equiv 1, correspond à un intervalle angulaire :

\Delta i'\ =\ {\lambda \over p \cos i'}

Ce pas varie directement avec la couleur de l'onde considérée.

finesse.png
Diffraction et interférences à N ondes (N = [3, 10, 30, 100, 300, 1000]). La largeur de la tache principale varie comme 1/N. La figure de droite zoome sur un ordre donné.
Crédit : ASM

Le pouvoir de résolution théorique

Le nombre N de traits du réseau fixe la largeur angulaire de la tache image : la figure d'interférence envoie la lumière de façon significative dans un intervalle angulaire N fois moindre qu'un ordre :

{ {\mathrm{d}} i'} _{\mathrm{diff}} = {\Delta i'\over N} = {\lambda \over N p \cos i'}

Le pouvoir de résolution théorique du réseau s'écrit, s'il est limité par la seule diffraction, en application de ce qui précède ( {\mathrm{d}} i' = { {\mathrm{d}} i'} _{\mathrm{diff}}) :

{\cal R}_0 \ = \ {\lambda \over {\mathrm{d}} \lambda}\ = {\lambda \over { {\mathrm{d}} i'} _{\mathrm{diff}}}\, {{ {\mathrm{d}} i'} _{\mathrm{diff}} \over {\mathrm{d}}\lambda} \ = \ m \ N

Le pouvoir de résolution théorique augmente avec le nombre de traits éclairés et avec l'ordre d'interférence.

AN : avec un réseau blazé de 100 mm, 100 traits/mm et travaillant à l'ordre 40, le pouvoir de résolution théorique atteint 400 000.

Inefficacité du réseau par transmission

L'inconvénient du réseau par transmission ici décrit est qu'il n'est toujours pas efficace : la dispersion spectrale est d'autant plus grande que l'ordre du réseau est élevé, mais l'essentiel de l'énergie reste dans l'ordre 0, inintéressant pour la dispersion. De plus, la superposition des ordres mélange les couleurs.


Simuler

reseaucoulr1.gif
Lumière rouge, ordre 1
Crédit : ASM
reseaucoulv1.gif
Lumière verte, ordre 1
Crédit : ASM
reseaucoulb1.gif
Lumière bleue, ordre 1
Crédit : ASM
reseaucoulv2.gif
Lumière verte, ordre 2
Crédit : ASM
reseaucoulv3.gif
Lumière verte, ordre -1
Crédit : ASM
reseaupasvp.gif
Lumière verte, ordre 1, grand pas
Crédit : ASM
reseaupasvq.gif
Lumière verte, ordre 1, petit pas
Crédit : ASM

La déviation du réseau

Les animations montrent la création des ordres d'interférence par interférences constructives, pour différents ordres et couleurs. Attention : ces animations supposent indûment valide à courte distance l'approximation de Fraunhofer, qui décrit la diffraction uniquement à grande distance de l'objet diffractant.

Voir comme la déviation varie avec :


S'exercer

qcmQCM

1)  Que vaut le pouvoir de résolution théorique d'un réseau de largeur 10 cm, avec 100 traits/mm, conçu pour travailler à l'ordre 1 ?



2)  Un réseau de N traits dont le pas p et la largeur de fente a sont très proches pourra travailler efficacement dans combien d'ordres :



3)  Le pouvoir de résolution théorique du réseau est meilleur dans le bleu que dans le rouge.



4)  Diaphragmer le faisceau parallèle alimentant un réseau améliore le pouvoir de résolution.




Le réseau blazé


Observer

reseauharps.jpg
Le double réseau de l'instrument HARPS (ESO, télescope de 3.6 m). Les 2 réseaux côte à côte couvrent une surface de 20 \times 80\ \mathrm{cm}.
Crédit : HARPS/ESO
sophielabo.jpg
Image projetée sur un écran translucide d'un spectre-échelle obtenu avec un spectromètre (SOPHIE, OHP) incluant un réseau blazé et un post-disperseur.
Crédit : OHP/CNRS

Un réseau efficace

Un réseau-échelle ou réseau blazé (a blaze of color = resplendissant de couleur) traite efficacement la dispersion : il envoie la puissance lumineuse incidente dans des ordres élevés du spectre, avec une grande dispersion spectrale. Il s'agit d'un réseau par réflexion, très couramment utilisé en instrumentation astrophysique.

spectreharps.png
Image d'un spectre-échelle à haute résolution spectrale obtenu avec une caméra CCD. Le spectre de l'étoile apparaît ici sous l'aspect de bandes sombres. L'étalonnage en longueur d'onde est apporté par les raies en émission d'une lampe spectrale (Thorium Argon), dont le spectre est intercalé avec celui de l'étoile, et enregistré simultanément.
Crédit : ESO/ASM
harpsblaze.png
Aperçu de 6 ordres du spectre obtenu avec le spectromètre Harps. La diffraction par chaque trait du réseau est responsable du profil d'étalement du flux ; la séparation des ordres est obtenue grâce à un deuxième élément dispersif, dans une direction perpendiculaire à celle du premier réseau.
Crédit : ESO/ASM
crossdisperserharps.jpg
La dispersion croisée du spectromètre Harps est assurée par un grisme, qui correspond à un réseau par transmission gravé sur un prisme.
Crédit : ESO

Les ordres d'un réseau blazé

Une deuxième dispersion, dite dispersion croisée, des ordres diffractés par un réseau blazé permet d'obtenir un spectre sur un large intervalle spectral divisé en plusieurs ordres. L'intensité dans chaque ordre est modulée par la fonction d'Airy de la fente d'entrée.


Apprendre

objectifsObjectifs

Introduire les propriétés du réseau blazé, dont l'intérêt est d'envoyer l'énergie diffractée dans un ordre d'interférence non nul.

reseaublaze.png
Profil d'un réseau blazé ou réseau échelle, et définition des angles. Les facettes réfléchissantes du réseau sont gravées avec une inclinaison \theta par rapport au plan du réseau. La diffraction envoie une intensité maximale dans un ordre d'interférence non nul, pour i'=2\theta-i. Les angles i et i' restent définis par rapport au plan du réseau.
Crédit : ASM
ordreblaze.png
Le maximum d'énergie renvoyée (dans la direction de l'optique géométrique) correspond à un ordre non nul, d'autant plus grand que la longueur d'onde est petite. Dans la pratique, l'inclinaison du faisceau est le plus souvent très proche de la normale aux facettes.
Crédit : ASM
diffracblaze.png
Pour un réseau blazé, les interférences se construisent principalement dans le lobe principal de la tache de diffraction, centré sur une frange d'ordre non nul.
Crédit : ASM

Le réseau blazé

Le réseau par transmission n'est pas efficace. La diffraction envoie essentiellement l'énergie dans l'ordre 0, qui n'est pas dispersif, ce qui n'est guère intéressant. L'intérêt du réseau blazé est d'envoyer le flux dans un ordre d'interférence non nul dans les conditions de l'optique géométrique (les conditions usuelles d'utilisation sont proches du cas i' = i = \theta, où \theta est l'angle de blaze). Cet ordre dépend de la couleur étudié.

D'un point de vue énergétique, le montage optique d'un réseau blazé s'arrange pour voir essentiellement la tache de diffraction du réseau (déterminée par une facette élémentaire).

specres.png
Avec un réseau blazé, l'image diffractée de la fente d'entrée correspond à un ordre d'interférences non nul. Cet ordre d'interférence varie d'une couleur à l'autre. Une dispersion à basse résolution spectrale, perpendiculaire à la haute résolution apportée par le réseau blazé, permet de séparer ces ordres et d'obtenir une image d'un large intervalle spectral constitué d'une succession d'ordres.
Crédit : ASM

Nécessité d'une dispersion croisée

Par rapport au réseau par transmission, le réseau blazé permet un travail dans un ordre d'interférence élevé, assurant un pouvoir de résolution théorique élevé. Mais, à lui seul, le réseau blazé n'assure pas une dispersion optimale : les ordres restent superposés, aboutissant à la confusion des couleurs si chèrement dispersées. Il faut adjoindre au réseau blazé un deuxième élément dispersif, assurant une dispersion dans une direction perpendiculaire, qui permet de distinguer les différents ordres.

Avec 2 dispersions à angle droit, la source doit nécessairement être ponctuelle (en pratique, souvent une fibre).


S'exercer

qcmQCM

1)  Un réseau blazé optimisé pour observer à l'ordre 50 en lumière verte, pourra observer dans le bleu l'ordre :



2)  Un réseau blazé de pas p=26 {\,\mu\mathrm{m}} et d'angle \tan \theta = 4 observe dans le rouge (600 nm) dans l'ordre




Le réseau et son optique


Observer

reseaulittrow.png
Montage de Littrow avec réseau blazé. Le plan du réseau est incliné par rapport à l'axe optique de telle sorte que les facettes du réseau sont quasi perpendiculaires à l'axe optique.
Crédit : ASM
fentereseau.png
Le réseau donne une série d'images colorées de la fente source.
Crédit : ASM

Montage de principe

Le réseau est alimenté en faisceau parallèle par une fente source ou un trou source. Le montage de principe est donc simplement un montage conjuguant la source à son image en passant via 2 lentilles équivalentes par un faisceau parallèle. Le réseau donne en fait une série d'images colorées de la fente source.

Spectromètre et réseau

En pratique, c'est évidemment plus complexe.

L'insertion du réseau dans le spectromètre nécessite :

L'appliquette ci-joint permet de lire le schéma optique de l'instrument CRIRES (CRyogenic high-resolution IR Echelle Spectrometer) du VLT.

application.png

Montage de Littrow

Un montage optique couramment utilisé avec un réseau blazé est celui de type Littrow, où une optique unique alimente le réseau en lumière parallèle et collecte le faisceau dispersé. Les facettes du réseau blazé sont éclairées sous une incidence quasi-nulle (mais correspondant à une incidence élevée par rapport au plan du réseau).


Apprendre

prerequisPrérequis

Etude du réseau en physique.

objectifsObjectifs

Lier le pouvoir de résolution spectrale d'un instrument disperseur avec réseau aux conditions de formation d'image.

reseaufente.png
Fente du réseau et collimation.
Crédit : ASM

La taille de la fente d'entrée

Le rôle de l'optique géométrique ne doit pas être oublié : il peut dimensionner la résolution effective du réseau. Avec \ell la largeur de la fente et f la focale du miroir collimateur, la taille angulaire de la fente vue dans l'espace image est :

{ {\mathrm{d}} i'} _{\mathrm{fente}} = { {\mathrm{d}} i} _{\mathrm{fente}} = {\ell\over f}

Le pouvoir de résolution limité par la largeur de la fente d'entrée ( {\mathrm{d}} i' = { {\mathrm{d}} i'} _{\mathrm{fente}}) s'écrit :

{\cal R}_1 \ = \ {\sin i \pm \sin i' \over \cos i'} \ {f \over \ell}

où subsistent les conditions géométriques de l'éclairement du réseau. Dans les conditions d'un réseau blazé éclairé quasi normalement aux facettes, i \simeq i' et avec le signe + correspondant au réseau par réflexion :

{\cal R}_1 \ \simeq \ 2 \ {\tan i'} \ {f \over \ell}

Un pouvoir de résolution optimal nécessite une source de petite taille et une grande focale. Avec une focale de l'ordre du mètre, une fente de 100 micromètres (en fait une fibre), et \tan i' =2, le pouvoir de résolution géométrique vaut 40 000.

La finesse de la fente d'entrée assure la finesse des images monochromatiques ; mais fermer la fente est réalisé au détriment de la luminosité. Assurer une longue focale nécessite un grand réseau, ce qui a un coût.

Pouvoir de résolution réel

Le pouvoir de résolution réel est conditionné par la plus petite valeur du pouvoir théorique ou limité par l'image géométrique de la fente d'entrée :

{\cal R} \ = \mathrm{min}\ [ {\cal R}_0, \ {\cal R}_1]

Un instrument bien dimensionné est conçu de façon à accorder la taille de la fente et la résolution optimale définie par la diffraction. Des informations sur le réseau, on conclut que le pouvoir de résolution {\cal R} du réseau, inférieur au pouvoir de résolution théorique, dépend :

Un pouvoir de résolution élevé nécessite une fente d'entrée très étroite.


S'exercer

qcmQCM

1)  Le pouvoir de résolution du réseau varie en fonction de la focale f de l'optique et la largeur \ell de la fente d'entrée comme




2)  Un réseau disperse plus dans le



3)  Le pouvoir de résolution théorique en sortie d'un spectromètre avec réseau blazé est meilleur dans le bleu que dans le rouge.




S'évaluer

exerciceLe réseau du spectromètre HARPS

Difficulté : ☆☆   Temps : 20 min

Question 1)

Le montage du spectromètre HARPS assure un pouvoir de résolution de l'ordre de 120 000. La focale de l'optique de chambre valant 1.56 m, en déduire la taille de la fente d'entrée, sachant que par ailleurs l'illumination du réseau a lieu dans les conditions \tan i' \simeq \tan i \simeq 4.

[1 points]

Question 2)

Le flux collecté par le télescope a un diamètre de 3.6 m, qui devient dans l'instrument 20 cm. En déduire le grossissement.

[1 points]

Question 3)

Déduire de ce qui précède l'ordre de grandeur du champ de vue sur le ciel.

[2 points]


Réponses aux QCM

pages_resolution-spectrale/resolution-spectrale-sexercer.html

QCM

pages_reseau-dispersion/reseau-dispersion-sexercer.html

QCM

pages_reseau-blaze/reseau-blaze-sexercer.html

QCM

pages_spectro-reseau/spectro-reseau-sexercer.html

QCM


Réponses aux exercices

pages_interference/resolution-spectrale-sexercer.html

Exercice 'Résolution et variable spectrale'


pages_interference/resolution-spectrale-sexercer.html

Exercice 'Quelle résolution ?'