Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Instrumentation

apprendreApprendre

objectifsObjectifs

Définir les notions de résolution spectrale : élément de résolution ; pouvoir de résolution ; intervalle spectral élémentaire.

Le pouvoir de résolution

Le pouvoir de résolution spectrale mesure la capacité à distinguer deux longueurs d'onde différentes \lambda et \lambda+\delta \lambda. Il est mesuré par la quantité :

{\cal R} \ = \ {\lambda\over \delta\lambda}

Le pouvoir de résolution est d'autant plus élevé que l'élément de résolution \delta\lambda (également appelé résolution spectrale élémentaire ou élément spectral) est petit.

Conversions

Le pouvoir de résolution peut être exprimé avec les diverses grandeurs spectrales (longueur d'onde \lambda, fréquence \nu) :

{1\over {\cal R}} \ = \ {\delta\lambda\over \lambda} \ = \ {\delta\nu\over \nu}

Il peut également être traduit en une vitesse, via l'équivalent Doppler:

{1\over {\cal R}} \ = \ {\delta\lambda\over \lambda} \ = \ {v\over c}

raievitesse.png
Diverses résolutions
InstrumentPouvoir de résolution typique\delta\lambda @ 500 nm (nm) vitesse (km/s)
Prisme500 1 600
Réseau5000 0.1 60
Réseau blazé500000.016

demonstrationDémonstration

La justification de ce qui précède procède en 2 étapes :

  • Différentiation logarithmique : \nu = c/\lambda \ \Longleftrightarrow\ \ {\mathrm{d}} \nu / \nu = - {\mathrm{d}}\lambda / \lambda.
  • Passage de la notation différentielle à une mesure : \delta \nu / \nu = \delta\lambda / \lambda.
Page précédentePage suivante