On connait très peu de choses sur les atmosphères des exoplanètes connues. Or cette question est fondamentale, tant pour les planètes géantes gazeuses dont l'atmosphère constitue la majeure partie de la planète, que pour les planètes à surface solide où le rôle de l'atmosphère dans leur habitabilité est primordial. Une atmosphère étant une enveloppe fluide en mouvement, son étude passe par sa dynamique et la compréhension de sa circulation.
Il existe deux méthodes complémentaires pour mieux comprendre la circulation atmosphérique : l'observation et la théorie. Notre connaissance de la circulation des atmosphères des exoplanètes est limitée car les observations sont à l'heure actuelle très difficiles. C'est pourquoi le recours à la théorie de la circulation atmosphérique, en se basant sur la mécanique des fluides, sert de socle à l'étude des circulations atmosphériques des exoplanètes. L'utilisation de modèles informatiques pour la simulation d'une atmosphère permet d'étendre cette théorie à des cas plus complexes tenant compte des nuages, aérosols, surface, etc ...
Les observations de la circulation atmosphèrique d'exoplanètes existent mais sont très rares. Par exemple, on a pu mesurer pour la planète HD 189733b son spectre d'émission et en tirer une carte de température. On a aussi pu mesurer les vents en haute altitude (d'au plus 10 000 km/h) de la planète HD 209458b par effet Doppler des lignes d'absorption du monoxyde de carbone présent dans son atmosphère. Toutefois, ces exemples restent rares si bien qu'en comparaison les observations des atmosphères planètaires de notre système solaire semblent exister à profusion. La connaissance de la dynamique atmosphérique des exoplanètes passe donc aussi et surtout par l'étude comparée des atmosphères du sytème solaire. Toutefois, notre système solaire ne présente pas toute la gamme des types d'exoplanètes connues, et par exemple l'étude d'une planète gazeuse géante chaude en rotation synchrone avec son étoile sur une orbite de 3 jours, cas assez exotique au regard du sytème solaire, passera également par la théorie et les moyens de simulation ...
Détecter et connaître les grandes caratéristiques physiques d'une exoplanète (orbite, taille, masse) est la première étape dans la compréhension d'une exoplanète. Connaître son atmosphère est la suite logique et la science actuelle en est à ses balbutiements dans ce domaine. L'étude des planètes du système solaire, tellement plus accessibles, et l'utilisation de modèles de climats s'avèrent nos meilleurs atouts pour comparer et extrapoler notre savoir à toutes les planètes en général.
On a vu que la notion de température d'équilibre ou effective requiert plusieurs hypothèses. L'une d'entre elles est que l'énergie rayonnée par unité de surface de la planète vers l'espace est homogène, c'est-à-dire qu'elle est la même en tous points, depuis l'équateur jusqu'aux pôles.
Or, la figure 1 nous donne un exemple pour la Terre qui montre la limite de cette hypothèse. On peut y voir que l'énergie absorbée par la Terre provenant du Soleil (et donc principalement dans la bande visible du spectre lumineux) dépend de la latitude, comme attendu d'après la figure 2. On y remarque surtout que l'énergie émise par la Terre vers l'espace, principalement de la bande infrarouge, dépend aussi de la latitude et est différente de la courbe d'énergie reçue. Ceci est un simple constat, issu d'observations, qu'il va s'agir d'interpréter.
En comparant les valeurs des puissances émises et reçues dans la figure 1, on constate qu'il y a une perte d'énergie vers les pôles et un gain d'énergie vers l'équateur. En vertu du principe de conservation de l'énergie, et en supposant que la planète est dans un état stationnaire, on ne peut que conclure que de l'énergie est transférée de l'équateur vers les pôles. Ce transfert d'énergie est causé par le mouvement global de l'atmosphère de la planète (et des océans s'ils sont présents).
On verra plus loin dans le cours que cette différence en énergie est également le moteur de la circulation atmosphérique.
Plus généralement, ce cours sur la dynamique atmosphérique va de pair avec celui sur la structure thermique des atmosphères. On y aborde ici les mouvements fluides à grande échelle, tandis que le cours sur la structure thermique aborde l'équilibre radiatif et les mouvements convectifs verticaux uniquement.
Les échanges d'énergie à l'échelle globale d'une planète sont fondamentaux pour comprendre la circulation à grande échelle. Historiquement, la première description et compréhension de ces mouvements a été faite sur Terre au 18ème siècle.
L'exemple le plus célèbre de la preuve d'une circulation atmosphérique à grande échelle provient de l'observation des vents permettant la navigation sur les océans terrestres. Les vents dominants soufflent d'Est en Ouest aux latitudes tropicales (environ 30°S à 30°N, et qu'on appelle alizé). Une explication satisfaisante de l'origine de ces vents fut donnée par George Hadley en 1735 : il existe une circulation à l'échelle de la planète qui transporte des masses d'air depuis l'équateur jusqu'aux tropiques en formant une cellule, qu'on appelle cellule de Hadley tel qu'on peut le voir sur la Figure 1.
L'origine des alizés est la suivante : quand une masse d'air tombe vers la surface aux tropiques, elle retourne à l'équateur. Ce faisant elle subit la force de Coriolis : elle est donc déviée vers sa droite dans l'hémisphère Nord, ou vers sa gauche dans l'hémisphère Sud, c'est-à dire vers l'Ouest dans les deux cas. Inversement, une masse d'air qui part de l'équateur vers les tropiques subira une déviation vers l'Est et formera un courant jet en altitude au niveau des tropiques et orienté vers l'Est.
L'origine des alizés est ainsi comprise, mais quid de l'origine de la cellule de Hadley en elle-même ? Elle provient de la différence d'énergie reçue par la Terre en fonction de la latitude. La hauteur d'échelle atmosphérique est plus grande à l'équateur (ou, autrement dit, l'air est plus dilaté), ce qui cause un gradient horizontal de pression entre l'équateur et les pôles, de plus en plus marqué à mesure que l'on s'élève du sol (voir Figure 2). Ce gradient de pression provoque un mouvement d'air en altitude, de l'équateur vers les tropiques. Le reste de la cellule de Hadley se met en place pour "fermer" la circulation d'air, par simple conservation de la masse.
Le mécanisme de la cellule de Hadley, connu depuis longtemps sur Terre, semble être universel dans les atmosphères des planètes, mais avec des caractéristiques différentes (extension en latitude, nombre de cellules) selon les propriétés physiques de l'atmosphère. Il est essentiel à la compréhension des mouvements à grande échelle d'une atmosphère et permet d'expliquer le transfert d'énergie de l'équateur vers les tropiques. Il est en réalité très complexe à comprendre dans les détails, et on trouve sur Terre d'autres mécanismes de transfert d'énergie au-delà des tropiques (voir Figure 1).
La circulation de Hadley n'est pas une cellule de convection. Son origine est une différence de chauffage en latitude, suivant l'horizontale, et non un gradient thermique vertical qui génère une force de flotabilité qui s'oppose à la gravité comme dans le cas de la convection. Ainsi, pour déterminer les dimensions de la cellule de Hadley il faut connaître la vitesse de rotation de la planète et le gradient horizontal de pression, des phénomènes qui ne rentrent pas en jeu dans les causes de la convection.
La rotation de la planète est la clé de la circulation atmosphérique, comme on vient de le voir sur Terre avec le rôle de la force de Coriolis dans la formation de la cellule de Hadley. Ainsi, il est fondamental de garder en tête les périodes de rotation pour les planètes du système solaire.
L'obliquité, qui est l'angle entre l'axe de rotation et la perpendiculaire au plan de l'orbite autour du Soleil, nous renseigne sur les saisons. Dans le cas de Vénus, l'obliquité proche de 180° signifie que la rotation est rétrograde : Vénus tourne de l'Est vers l'Ouest, dans le sens opposé aux autres planètes.
Corps | Période de révolution (jours) | Période de rotation | Obliquité |
---|---|---|---|
Vénus | 224.7 | 243.0 jours | 177.4° |
Terre | 365.2 | 23h56 | 23.4° |
Mars | 687.0 | 24h37 | 25.2° |
Jupiter | 4335.3 | 9h50 | 3.1° |
Saturne | 10757.7 | 14h14 | 26.7° |
Titan | 10757.7 | 15.95 jours | 26.7° |
Les informations que nous possédons sur ces planètes proviennent d'observations, de résultats de modèles et des équations régissant l'atmosphère.
Les méthodes d'étude des atmosphères planétaires comprennent des moyens différents tels que la télédétection (en utilisant des telescopes sur la Terre ou des vaisseaux spatiaux); des mesures directes in situ obtenues par sondes, ballons, atterrisseurs; des études de laboratoire; et des modèles de circulation atmosphèrique. Les mesures des mouvements atmosphériques sont accomplies principalement par les moyens suivants :
La Terre et Mars présentent des circulations à grande échelle très similaires typiques d'une planète en rotation rapide - les deux planètes ont des périodes de rotation similaires (Table). La différence principale est due à la présence des océans sur la Terre. En définitive, les deux atmosphères sont mises en mouvement par la différence d'énergie reçue sur la surface en fonction de la latitude.
La circulation atmosphérique à grande échelle se caractérise par des cellules de circulation entre différentes latitudes. Si la cellule de Hadley rejoint l'équateur aux latitudes moyennes à environ 30 ° Nord et Sud comme vu auparavant, les cellules de Ferrel ne fonctionnent pas du tout sur le même mécanisme que les cellules de Hadley. Elles mettent en jeu des ondes planétaires baroclines qui dominent les mécanismes de transfert. Les cellules de Ferrel se situent entre les latitudes 30 et 60 ° dans chaque hémisphère, dans lesquelles on trouve un courant-jet. On trouve également une cellule polaire de latitude 60° au pôle dans chaque hémisphère, délimitée par le vortex polaire.
Cette structure en cellule est un comportement moyen de l'atmosphère, qui varie avec les saisons et surtout avec les conditions météorologiques locales, dépendant de nombreaux phénomènes transitoires et chaotiques. Par exemple le centre de la cellule a tendance à se déplacer de part et d'autre de l'équateur lorsque le point subsolaire varie en latitude selon la période de l'année. De plus, il n'existe pas non plus de courant ascendant ou descendant continu et clairement mesurable dans les branches des cellules pour un observateur momentané en un endroit donné. Il s'agit là d'un comportement moyen qui peut être dominé par des effets locaux ou temporaires (cycle jour/nuit, topographie, perturbation météorologique, etc ...). La manifestation la plus tangible de ces cellules à tout un chacun demeure néanmoins la présence de courants jets.
Tout comme la Terre, Mars possède également une cellule de Hadley. Du fait de l'atmosphère plus ténue de Mars (la pression au sol y est de seulement 6 mbar en moyenne, par rapport à 1000 mbar sur la Terre), les gradients de pression relatifs des pôles à l'équateur sont plus grands et la cellule de Hadley y est plus étendue. Pendant l'équinoxe on trouve deux cellules de Hadley centrées sur l'équateur comme sur Terre, mais durant le solstice, on ne trouve plus qu'un seule grande cellule de Hadley des moyennes latitudes de l'hémisphère d'été vers les moyennes latitudes de l'hémisphére d'hiver. Il faut noter que la différence notable de position de l’ascendance au moment du solstice entre la Terre et Mars vient de la faible inertie de la surface martienne (contrairement aux océans terrestres), qui fait que le maximum de température se déplace complètement dans l’hémisphère d’été alors qu’il reste dans les tropiques sur Terre.
L'atmosphère de Vénus est caractérisée par une dynamique complexe: une super-rotation rétrograde domine dans la troposphère/basse mésosphère, tandis qu'une circulation solaire-antisolaire peut être observée dans la thermosphère. La super-rotation s'étend depuis la surface jusqu'au sommet des nuages avec des vents de seulement quelques mètres par seconde près de la surface et atteignant une valeur maximale de 100 au sommet des nuages (70 km), ce qui correspond à un periode de rotation de 4 jours terrestres. Les processus responsables du maintien de la super-rotation zonale dans la basse atmosphère et sa transition vers la circulation solaire-antisolaire dans la haute atmosphère sont encore méconnus.
En plus de la super-rotation zonale, une cellule de Hadley s'écoulant de l'équateur aux pôles avec des vitesses de moins de 10 a été observée au sommet des nuages. La circulation de Hadley ou méridienne sur Vénus joue un rôle important dans le transport d'air chaud vers les pôles et d'air froid vers l'équateur. Il s'agit d'une cellule dans chaque hémisphère et elle n'est pas limitée aux régions proches de l'équateur comme sur la Terre où la cellule de Hadley est limitée par la force de Coriolis, mais elle s’étend jusqu’aux pôles.
Il y a très peu mesures directes de la circulation atmosphérique de Titan, un satellite de Saturne, avec une période de rotation de 16 jours. Comme sur Vénus, une super-rotation est prévue dans la haute atmosphère; néanmoins, au contraire de Vénus, les saisons sur Titan jouent un rôle important dans la circulation générale. Les observations obtenues par la sonde Cassini-Huygens montrent la présence d'un seul jet très intense direct vers l'est avec des vitesses de 190 entre les latitudes 30-50 dans l'hémisphère nord. L'existence d'une circulation de Hadley de l'équateur au pôle a été également prédite. L’hémisphère Nord est l’hémisphère d’hiver au moment des observations de Cassini. Les cellules de circulation prédites vont d’un pôle (été, ascendance) à l’autre (hiver, subsidence) pendant la majeure partie de l’année, avec une transition autour de l’équinoxe au cours de laquelle l’ascendance se déplace pour changer d’hémisphère, la cellule se réduisant sur l’hémisphère de printemps pendant qu’une autre se développe sur l’hémisphère d’automne, puis prend sa place.
Sur les planètes telluriques les vitesses du vent sont mesurées par rapport à la surface de la planète. Comme les géantes gazeuses et les géantes glacées ne disposent pas d'une surface solide, les vents sont généralement mesurés par rapport à la période de rotation de leur champ magnétique. Chacune des quatre planètes géantes (Jupiter, Saturne, Uranus, et Neptune) montrent une circulation zonale intense formée par un système de courants-jets qui alternent leur circulation (Est-Ouest) avec la latitude.
Les planètes géantes gazeuses de notre Système solaire, Jupiter et Saturne, sont composées essentiellement de gaz légers, comme l'hydrogène et l'hélium. On observe aussi la formation de nuages constitués de méthane, d'ammoniac, et du sulfure d'hydrogène.
Au niveau des nuages d'ammoniac, Jupiter possède environ 6-8 courants-jets par hémisphère, avec une vitesse maximale à l'équateur où le jet dirigé vers l'est atteint une vitesse zonale de m s-1, et à 23° Nord les vents atteignent jusqu'à 180 m s-1. Saturne possède 4-6 courants-jets par hémisphère, avec un très fort et large jet équatorial direct vers l'est à une vitesse maximale de m s-1. Jupiter affiche également de nombreux tourbillons de courte durée et des tempêtes de longue durée comme la Grande Tache rouge.
Les planètes géantes glacées de notre Système solaire, Uranus et Neptune, sont constituées principalement d'eau, méthane ou d'ammoniac.
Les deux planètes glacées montrent un jet équatorial dirigé vers l'ouest - avec une vitesse de m s-1 et de m s-1 respectivement pour Uranus et Neptune - et deux jets intenses aux latitudes moyennes dirigés vers l'est avec une vitesse maximale de 200 m s-1. Comme sur Jupiter, forts tourbillons, convection et tempêtes ont été observés sur Neptune. Au contraire, sur Uranus aucune tempête n'a été observée.