Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Structure thermique des atmosphères planétaires

Expression des gradients adiabatiques

Auteur: EM

demonstrationGradient adiabatique sec

Lorsqu'une parcelle de gaz se déplace verticalement de façon adiabatique, sa température varie sous l'effet des variations de pression. Si l'on considère un déplacement élémentaire entre l'altitude z et z+dz d'une masse m d'un gaz de capacité calorifique à pression constante Cp, d'entropie S et de volume V à la pression P et à la température T, un bilan de son enthalpie H donne dH = m C_p dT = T dS + V dP = V dP puisque dS=0 (déplacement adiabatique). La variation de pression dP étant reliée au déplacement vertical selon la loi hydrostatique dP = - \rho g dz = -\frac{m}{V} g dz, on obtient alors dT = -\frac{g}{C_p} dz = \Gamma dz en posant \Gamma = -\frac{g}{C_p}, appelé gradient adiabatique (sec). La détente adiabatique d'une parcelle de gaz ascendante conduit donc à un refroidissement proportionnel à la différence d'altitude selon le gradient adiabatique.

Une autre façon, peut-être plus intuitive, de considérer ce phénomène est d'interpréter la relation intermédiaire obtenue mC_p dT = - mg dz : la variation d'enthalpie du gaz (son "énergie thermique" en tenant compte des forces de pression) est directement reliée à sa variation d'énergie potentielle. Faire monter une parcelle de gaz lui coûte de l'énergie potentielle, ce qui est prélevé sur l'énergie thermique interne de ce gaz en l'absence de chaleur communiquée depuis l'extérieur.

demonstrationGradient adiabatique humide

Certaines atmosphères comportent des espèces chimiques condensables. L'exemple par excellence est la vapeur d'eau sur Terre, qui peut se condenser en glace ou un eau liquide. On rencontre aussi ce cas de figure sur Titan avec cette fois le méthane, ou encore dans les atmosphères des géantes gazeuses au niveau de leurs couches nuageuses. Le bilan précédent doit alors être modifié pour tenir compte de la libération de chaleur latente causée par le changement d'état qui peut arriver lorsque l'espèce condensable est saturée.

Le nouveau bilan d'enthalpie est alors donné par dH = VdP + L dm_{\mathrm{vol}}L désigne l'enthalpie massique de condensation et dm_{\mathrm{vol}} la masse d'espèce volatile qui se condense au cours du déplacement au sein de la parcelle de gaz. On arrive alors à l'expression suivante pour le nouveau gradient adiabatique \Gamma' (dit gradient adiabatique humide) : \Gamma' = \frac{\Gamma}{1 + \frac{L}{C_p} \frac{\partial e_{\mathrm{vol}}}{\partial T}}e_{\mathrm{vol}} désigne la fraction massique du volatil au sein de la parcelle de gaz. On constate alors que \Gamma' est plus faible que \Gamma en valeur absolue : la libération de chaleur latente par liquéfaction ou condensation compense partiellement le refroidissement dû à l'ascension.

Gradients adiabatiques au sein des atmosphères du système solaire
VénusTerreMarsJupiterSaturneUranusNeptuneTitan
\Gamma \, (\mathrm{K/km})-10.5-9.8-4.5-2-0.71-0.67-0.85-1.3
\Gamma' (\mathrm{K/km})-5-0.5
Page précédentePage suivante