Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Structure thermique des atmosphères planétaires

Profil thermique radiatif-convectif

Auteur: EM

demonstrationNécessité du phénomène de convection

La comparaison entre le profil thermique à un instant donné et le gradient adiabatique au même endroit permet de connaître la stabilité de l'atmosphère vis-à-vis des phénomènes de convection. Supposons pour bien comprendre un profil thermique isotherme. Si un mouvement local amène une parcelle de gaz à un niveau plus élevé de façon assez rapide pour qu'aucun échange thermique n'ait lieu (par conduction ou rayonnement), celle-ci va se refroidir en suivant le gradient adiabatique, et sera donc plus froide et plus dense que ses environs immédiats. Cette parcelle aura donc tendance à retomber jusqu'à son niveau de départ, puisqu'un gaz plus froid est également plus dense toutes choses égales par ailleurs : par exemple, pour un gaz parfait, \rho = \frac{MP}{RT}. On est donc en présence d'une atmosphère stable.

À l'inverse, si le profil thermique décroît plus fortement avec l'altitude que ce qu'indique le gradient adiabatique, cette parcelle de gaz sera certes refroidie si elle est soumise à un déplacement ascendant adiabatique, mais elle se retrouvera tout de même légèrement plus chaude que l'atmosphère environnante, et donc moins dense. Elle pourra donc continuer son mouvement ascendant jusqu'à ce qu'elle rencontre une zone stable où le profil thermique décroît moins vite que le gradient adiabatique. Une telle zone où des mouvements de convection à grande échelle peuvent se développer à partir d'une petite perturbation est dite instable. L'effet à long terme de ces mouvements de convection va conduire à un mélange qui homogénéisera le profil vertical de température jusqu'à retrouver une situation marginalement stable, c'est-à-dire avec un profil thermique suivant exactement le gradient adiabatique.

Stabilité du profil thermique
adiabat.png
Sur l'image de gauche, le profil thermique décroît rapidement avec l'altitude (dégradé de couleur rouge vers bleu). Si une masse d'air (délimitée par l'ellipse pleine) est amenée de façon adiabatique à un niveau supérieur, son refroidissement adiabatique est insuffisant par rapport aux alentours et elle reste plus chaude que ses environs. Elle peut alors continuer à monter, le profil thermique est instable. Sur l'image de droite, le profil thermique décroît très lentement avec l'altitude. La même masse d'air montant alors plus haut se retrouve plus froide que ses environs, et retombe alors à son niveau de départ. Le profil thermique est convectivement stable.
Crédit : Emmanuel Marcq

Troposphère

Les profils thermiques purement radiatifs tels que ceux modélisés ici ont tendance à voir leur pente \frac{dT}{dz} = \frac{dT}{d\tau} \times \frac{d\tau}{dz} croître en valeur absolue à mesure que la profondeur optique infrarouge \tau croît en s'enfonçant dans l'atmosphère profonde. Sous couvert d'hypothèses raisonnables concernant la composition du gaz considéré parfait (pour C_p) et la croissance de \tau selon le niveau de pression dans l'atmosphère, il est possible (mais hors-programme) de montrer que la pente du profil radiatif excède, en valeur absolue, le gradient adiabatique pour \tau voisin de l'unité. Les régions atmosphériques situées en dessous (\tau > 1) deviennent donc instables vis-à-vis de la convection qui s'y développe, et le profil thermique se met alors à suivre non plus la valeur donnée par le seul équilibre radiatif, mais le gradient adiabatique. On appelle cette couche atmosphérique troposphère. Les couches situées au-dessus (\tau < 1) sont quant à elles stables vis-à-vis de la convection, et l'équilibre radiatif y est valable : on se trouve alors dans la stratosphère ou la mésosphère, selon l'existence ou non d'une inversion de température.

Notons qu'il existe quand même une troposphère dans les atmosphères des planètes telluriques trop peu opaques au rayonnement infrarouge thermique pour avoir \tau > 1 (par exemple Mars, et dans une moindre mesure la Terre). En ce cas, l'instabilité de départ est causée par la discontinuité de température au niveau de la surface planétaire (voir ici), qui donne naissance à des mouvements de convection s'étendant jusqu'à une altitude équivalente à une échelle de hauteur environ.

Profil thermique radiatif-convectif
radconv2.png
En pointillé, le profil thermique purement radiatif. En dessous d'une certaine altitude (marqué par un point noir), ce profil devient convectivement instable et la convection prend le relais pour transporter l'énergie (aidant ainsi au refroidissement de la surface). la couche atmosphérique située sous ce point s'appelle alors la troposphère, et celle au-dessus mésosphère (il n'y a pas de stratosphère dans ce profil).
Crédit : Emmanuel Marcq
Page précédentePage suivante