Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Soleil et Héliosphère

Rayonnement radio (1/3)

images/radio_typeII_III.png
Exemple d'émission radio de type II et III : le temps est en abscisse, la fréquence est en ordonnée. Ce type de diagramme est appelé spectre dynamique car il donne la répartition de l'énergie radio (code de couleur : bleu très faible intensité, rouge : très forte intensité) en fonction de la fréquence (ici de 10 à 180 MHz) et du temps (ici de 0 à 24h).
Crédit : IPS Radio and Space Services, Australia

Sursauts solaires de type II et III

Lors d'éruptions solaires, des particules sont accélérées à de très fortes énergies. Ces particules se propagent le long des lignes de champ magnétique interplanétaire, formant parfois des faisceaux de particules. En se propageant, ces particules vont provoquer des émissions dans le domaine radio. Nous allons voir les processus de base de ces émissions (le détail est en dehors des limites de ce cours : c'est encore un sujet d'investigation fortement débattu !)

On distingue deux types d'émissions radio : les émissions de type II et de type III. Un exemple de ces émissions est présenté sur la figure figure ci-contre. Ce rayonnement électromagnétique est caractérisé par une dérive en fréquence de l'émission en fonction du temps. Du point de vue observationnel, la différence principale entre ces deux types d'émission réside dans la pente de la dérive de l'émission avec le temps : les émissions de type III dérivent beaucoup plus vite que les émissions de type II.

Les faisceaux en se déplaçant dans le milieu interplanétaire produisent ce que l'on appelle des "ondes de Langmuir" à une fréquence proche d'une fréquence particulière appelée "fréquence plasma" qui s'écrit :

f_p=\frac{1}{2\pi}\sqrt{\frac{ne^2}{m\epsilon_0}}

avec f_pla fréquence plasma (en Hz), n est la densité d'électrons, e la charge élémentaire (1,6 x 10-19 c), m la masse de l'électron (9 x 10-31kg), epsilon_0 la constante diélectrique (8,8 x 10-12 F. m-1).

Pour concrétiser le sujet, supposons que nous soyions dans le vent solaire. Une densité typique est 10 particules.cm-3. La fréquence plasma vaut alors 28 kHz : nous sommes dans la gamme des ondes radio.

Ces ondes sont électrostatiques : elles ne se propagent pas. Seules des mesures dans la source de ces ondes permettent de les mesurer, et donc de déterminer la densité n du milieu. Toutefois, par certains processus, ces ondes sont transformées en ondes électromagnétiques qui, elles, vont se propager et qui sont à une fréquence proche de cette fréquence plasma.

Que nous apprennent ces ondes ?

Comme le faisceau se déplace dans un milieu dont la densité décroit quand la distance au Soleil augmente, la fréquence diminue avec le temps. C'est ce qui explique la dérive en fréquence des émissions avec le temps.

On utilise ces pentes de dérive pour déterminer la vitesse des faisceaux de particules. En effet, on peut montrer que la pente peut s'écrire :

\frac{df}{dt}= \frac{A.V}{2\sqrt{n(r)} }\frac{dn(r)}{dr}

où df/dt représente la variation de la fréquence en fonction du temps (la pente dans le diagramme précédent), A=\frac{1}{2\pi}\sqrt{\frac{e^2}{m\epsilon_0}}, V la vitesse du faisceau d'électrons, n(r) un modèle de densité électronique en fonction de la distance au Soleil et dn(r)/dr la variation de cette densité en fonction de la distance au Soleil. Donc, si l'on se donne un modèle de densité électronique dans le milieu interplanétaire, on peut déduire V à partir de la mesure de pente df/dt.

Page précédentePage suivante