Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Soleil Terre Lune Phénomènes

En savoir plus: Critère en latitude-3

ensavoirplusEn savoir plus

On a :

q=(S_0)*M'/(S_0)*S                         soit q=((S_0)*S + SM')/(S_0)*S    =1 + S*M'/(S_0)*S

SM'=(q-1)* S_0*S=(q-1)*beta*tg(gamma) avec SM'^2=beta^2 *(q-1)^2 *tg^2*(gamma)

M'M/beta =OM'/OS_0 =(O*(S_0) - (S_0)*M')/OS_0=1  -  (S_0)*M'/OS_0

M'M/beta =1 - q * (1/(1+OS/(SS_0)))=1-q*(SS_0/OS_0)=1-q*((beta*tg(gamma))/OS_0)

M'M/beta=1-q*tg(gamma)*tg(i)

SM^2 = SM'^2 + M'M^2 = beta^2*( (q-1)^2 * tg^2*((gamma))+((1-q*tg(gamma)*tg(i))^2))   (1)

On introduit un angle auxiliaire i', tel que : (q-1)*tg(i')=q* tg(i)

f(gamma)=(q-1)^2*tg^2*(gamma)+(1-q*tg (gamma)*tg(i))^2=(q-1)^2*tg^2*(gamma)+(1-(q-1)*tg(gamma)*tg(i'))^2

SM est minimum lorsque f'(gamma)la dérivée de f est nulle

f'(gamma)=0<=> (q-1)*tg(gamma)=sin(i')*cos(i')    (2)

SM=beta*cos(i')   (3)

Page précédentePage suivante