Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Masse

apprendreApprendre

objectifsObjectifs

Reconstituer les éléments géométriques de l'orbite vraie du système.

prerequisPrérequis

Eléments géométriques définissant une trajectoire elliptique.

Demi-grand axe

L'observation donne une série de positions relatives des deux étoiles sur le ciel. En choisissant l'étoile la plus brillante (E2) comme origine des coordonnées, les positions de l'étoile la plus faible (E1) s'agencent sur une ellipse, mais il apparaît que E2 n'est pas au foyer de l'orbite projetée.

ellipseprojetee.png

Soit O le centre de l'ellipse apparente et A à l'intersection de la droite OE2 avec l'ellipse, au plus proche de E2 ; O est la projection du centre de l'orbite vraie et A est la projection de son périgée. Le segment [OA] est alors la projection du demi-grand axe de l'orbite vraie.

Excentricité

L'excentricité e n'est pas plus conservée par la projection que le demi-grand axe, mais la détermination de l'excentricité de l'orbite réelle découle directement des paramètres de l'orbite projetée. Cette excentricité est en effet définie par la distance du foyer (E2) au centre (O), rapportée au demi-grand axe (0A). Ce rapport se mesure directement par OE2/OA, qui est conservé par la projection (par application du théorème de Thalès).

cercleellipse.png

Inclinaison

On retrouve l'inclinaison i de l'orbite vraie avec le plan du ciel en reconstituant la projection du cercle principal de l'ellipse vraie : ce cercle se projette suivant une ellipse dont le rapport d'axes est égal à \cos i.

On utilise pour cela une propriété de l'ellipse et de son cercle principal : la direction parallèle au diamètre conjugué du grand axe passant par un point M de l'ellipse coupe le cercle principal en un point M' et le grand axe en un point H, tels que HM/HM' = \sqrt{1-e^2}. Cette propriété se conservant par projection on peut donc reconstituer l'ellipse projection du cercle principal point par point à partir de la trajectoire observée et de la direction conjuguée, i.e. la direction de la tangente à l'ellipse observée aux points A et P.

Le demi-grand axe de l'orbite vraie est donc finalement égal à OA/\cos i.

Page précédentePage suivante