Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Soleil Terre Lune Phénomènes

Evolutions des éclipses homologues

Evolution en longitude terrestre

Nous avons vu que la période du saros n'est pas un nombre entier de jours, sa valeur est de 6585,32 jours. Donc entre deux éclipses homologues, la Terre n'a pas tourné d'un nombre entier de jour, les zones concernées par les éclipses ne sont donc pas les mêmes. En 0,32 jour, la Terre tourne d'environ 120°, les zones concernées par l'éclipse se déplacent donc d'environ 120° vers l'ouest. Comme une éclipse de Lune est visible, au moins durant une partie de sa durée, sur environ les deux tiers de la surface terrestre, il n'est pas surprenant que des éclipses homologues successives soient visibles d'un même lieu. Après trois saros, l'éclipse a même lieu sensiblement au même instant. Cela explique que la période de récurrence des éclipses (saros) soit plus facilement décelable, en un lieu, à travers les suites d'éclipses de Lune observées. Ce qui n'est pas le cas pour les éclipses de Soleil.

serielong02_lune.jpg
Évolution en latitude
Crédit : IMCCE/Patrick Rocher

Evolution en latitude écliptique par rapport aux cônes d'ombre et de pénombre

Le dessin ci-dessus nous montre l'évolution des éclipses homogènes de Lune durant une suite longue de saros au nœud ascendant. Sur cette figure nous avons figée la longitude de la pleine Lune (opposition), ce sont donc les positions du nœud ascendant qui vont variées dans le sens direct par rapport à l'opposition au cours du temps. Nous avons représenté la position du nœud ascendant environ tous les 325 ans ainsi que les maxima des éclipses correspondantes c'est-à-dire les distances minimales entre le centre de la Lune et le centre des cônes.

Au début de la suite longue d'éclipse de Lune, le nœud se trouve en position N1, à l'ouest de l'opposition, la Lune va donc passer d'ouest en est devant le bord nord du cône de pénombre, les premières éclipses de la suite seront donc des éclipses par la pénombre passant au bord nord de la pénombre (éclipsant donc le sud de la Lune). 325 ans plus tard, le nœud ascendant de l'orbite lunaire est en N2, la Lune rencontre le bord nord du cône d'ombre, les éclipses de Lune sont donc partielles par l'ombre. 325 ans plus tard, le nœud ascendant N3 est confondu avec la longitude de l'opposition, c'est le cas idéal d'une éclipse totale centrale, puis nous avons une situation symétrique par rapport à l'opposition, c'est-à-dire un nœud en N4 correspondant à des éclipses partielles par l'ombre mais au sud du cône d'ombre (éclipsant le nord de la Lune), puis des éclipses par la pénombre au sud du cône de pénombre qui prennent fin après la dernière position N5 du nœud.

On remarque que lorsque le nœud ascendant est à l'ouest de l'opposition le maximum de l'éclipse a lieu avant l'opposition, et que lorsque le nœud ascendant est à l'est de l'opposition le maximum de l'éclipse a lieu après l'opposition. Donc la connaissance de l'instant du maximum de l'éclipse, de l'instant de l'opposition et de la nature du nœud (ascendant ou descendant) permet de situer la position de l'éclipse dans la suite longue d'éclipses homogènes et la partie de la Lune éclipsée. Ou bien, inversement , la connaissance de la position d'une éclipse dans sa suite longue et la nature du nœud permet de savoir si le maximum de l'éclipse a lieu avant ou après l'opposition et de connaître la partie de la Lune éclipsée.

Page précédentePage suivante