Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Compléments de Physique

Relation de conjugaison de Descartes

Auteur: Benjamin Mollier

demonstrationUne autre relation de conjugaison

Nous pouvons également obtenir une relation similaire, avec origine au sommet du miroir cette fois-ci. En partant de la formule du grandissement :

\frac{\overline{A'B'}}{\overline{AB}}  =  -\frac{\overline{SA'}}{\overline{SA}} = \frac{\overline{F'S}+\overline{SA'}}{\overline{F'S}} = 1 + \frac{\overline{SA'}}{\overline{F'S}}

-\frac{\overline{SA'}}{\overline{SA}}  =  1 - \frac{\overline{SA'}}{\overline{SF'}}

definitionRelation de conjugaison de Descartes (avec origine au centre)

On obtient ainsi la relation de conjugaison de Descartes :

\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{1}{f'}

remarqueNotations

Remarque, on note parfois les distances \overline{SA} et \overline{SA'} respectivement p et p'.

\frac{1}{p'} + \frac{1}{p} = \frac{1}{f'}

Là encore, les 2 relations de Descartes pour les lentilles et les miroirs ne se distinguent que par un signe -. Le pliage, qui affecte tout ce qui se passe "à droite" de la lentille, change le signe de toutes les grandeurs algébriques situées en son aval. On change donc p' en -p' et f' en -f'...

Page précédentePage suivante