La mort des étoiles survient lorsque le carburant nucléaire principal, l'hydrogène, fait défaut au centre.
Le stade de géante rouge est atteint par une étoile telle le Soleil en fin de vie. La contraction du noyau, à la recherche d'une source d'énergie autre que la fusion de l'hydrogène, s'accompagne de l'extension de l'enveloppe externe, et de vents stellaires importants, conduisant à l'apparition d'un nuage de poussières circumstellaires.
Une nébuleuse planétaire n'a rien à voir avec une planète, sinon qu'historiquement ce nom a été donnée par confusion observationnelle due à un manque de résolution angulaire.
Une étoile de masse inférieure à 1.5 masse solaire ayant fini de consommer tout son hydrogène, puis son hélium, voit son cœur s'effondrer et se transforme en naine blanche. Les couches externes, expulsées par la pression de radiation, s'étendent autour de l'étoile à une vitesse d'expansion de plusieurs dizaines de kilomètres par seconde. Cette région est ionisée sous l'action des photons ultraviolets émis par l'étoile devenue très chaude ().
Les étoiles les plus massives atteignent le stade de supergéante rouge, telle Bételgeuse. Leur atmosphère, réagissant à la fusion des éléments de plus en plus lourds, atteint des tailles considérables, d'où leur dénomination.
Décrire l'évolution d'une étoile de faible masse (comme le Soleil).
En fin de séquence principale, la plupart des enveloppes stellaires autour du noyau ne sont pas convectives, mais radiatives : l'énergie est évacuée par les photons, sans transport de matière, donc sans mélange. Dès lors, il est inéluctable que, l'hydrogène central arrive à épuisement. L'étoile quitte la séquence principale.
En fait durant cette phase, comme la suivante, l'hydrogène continue à brûler, mais en une fine couche autour du noyau d'hélium.
L'étoile se déplace dans le diagramme HR vers les faibles températures. La baisse de température et l'augmentation du rayon se compensent approximativement : l'évolution a lieu à luminosité quasi constante. C'est la phase de sous-géante.
La rupture de production d'énergie conduit à un déséquilibre de structure, et le noyau d'hélium se contracte pour tenter de retrouver un équilibre. En se contractant, il se réchauffe, et par réaction l'enveloppe extérieure s'étend, et bien sûr la détente s'accompagne d'un refroidissement.
Les étoiles de masse comparable à celle du Soleil voient leur atmosphère se dilater de plusieurs ordres de grandeur (en réponse au cœur d'hélium inerte qui se contracte, et toujours avec une couche d'hydrogène en fusion entre le cœur et l'enveloppe). La luminosité s'accroît considérablement : l'étoile parcourt la branche des géantes rouges.
Durant cette phase, l'étoile redevient entièrement convective, ce qui extrait les éléments lourds produits dans les couches internes vers les couches extérieures. C'est aussi une phase d'instabilité atmosphérique, s'accompagnant au sommet de la branche des géantes d'un fort taux d'éjection de masse, qui peut atteindre par an avec des vitesses d'éjection de l'ordre de 5 à . Cette perte de masse apparaît quand la gravité de surface de l'étoile est devenue très faible : les couches périphériques de l'enveloppe stellaire ne sont plus que très (trop) faiblement liées à l'étoile. L'étoile résiduelle a d'autant plus maigri qu'elle était peu massive au départ, ce qui conduit à des géantes rouges aussi peu massive 0.6 masse solaire après la perte de masse.
Au sommet de la branche des étoiles, les étoiles ont un rayon typiquement entre 100 et 200 fois le rayon solaire, un cœur d'hélium de plus en plus dense et chaud, et une masse allégée.
La contraction du noyau d'hélium conduit à son fort réchauffement. Dès , la fusion de l'hélium peut conduire au carbone, par la réaction bilan : . L'étoile, retrouvant une source d'énergie, retrouve donc une situation d'équilibre. L'apport d'énergie de fusion de l'hélium provoque la dilatation du cœur et l'effondrement de l'enveloppe.
La fusion de l'hélium démarre dans des conditions différentes selon la masse de l'étoile. Une étoile peu massive présente un cœur dégénéré. Cette dégénérescence bloque la fusion de l'hélium, qui ne peut démarrer que dans des conditions brutales, le flash de l'hélium, dès lors qu'une température critique est atteinte. Les étoiles plus massives (de l'ordre de 2 fois la masse du Soleil) ont un cœur plus chaud, non dégénéré, et peuvent commencer la fusion de l'hélium graduellement.
Les étoiles qui brûlent leur hélium central s'accumulent sur le clump, l'extrémité la plus froide de la branche horizontale des géantes. Leur rayon vaut typiquement .
Lorsque l'hélium est épuisé dans le cœur, l'équilibre de l'étoile est perturbé. Sans source d'énergie interne, le cœur se contracte, et donc l'enveloppe recommence à s'étendre. Le mécanisme qui associe le contraction (dilatation) du cœur et la dilatation (contraction) conjointe de l'enveloppe est identique à celui à l'œuvre sur la branche des géantes.
Ce mécanisme de miroir comporte trois ingrédients : un cœur qui produit peu ou pas de l'énergie, une enveloppe essentiellement convective, et à l'interface une couche d'hydrogène en fusion. Si le cœur se contracte, la couche d'hydrogène voit sa température augmenter, et ceci provoque la dilation de l'enveloppe, et réciproquement.
Dans le diagramme HR, la branche asymptotique est parallèle à la branches des géantes rouges, un peu plus chaude. L'avenir de l'étoile dépend de sa masse. La perte de masse est aussi cruciale pour cette phase d'évolution.
La perte de masse pouvant durer jusqu'à un million d'années, ces étoiles de la branche asymptotique s'entourent progressivement d'une enveloppe qui peut atteindre plusieurs masses solaires, et des dimensions importantes, de l'ordre d'une année de lumière, contribuant ainsi à l'enrichissement du milieu interstellaire, avec des éléments plus lourds que l'hydrogène et l'hélium.
Si la masse de l'étoile (plus précisément, de ce qu'il en reste, car la perte de masse est importante au sommet de la branche asymptotique) est assez importante, le cœur pourra se contracter, à l'épuisement des éléments les plus légers, pour démarrer la fusion des éléments plus lourds.
La fusion du carbone ensuite conduit au néon, à l'oxygène. Tous les éléments jusqu'au fer peuvent ainsi être produits par fusion dans les étoiles les plus massives : une étoile massive est une usine à éléments lourds.
Si la masse de l'étoile n'est pas trop importante, arrive un moment où la température centrale limitée ne permet plus de trouver de nouvelle source d'énergie. Seule subsiste la pression de dégénérescence des électrons pour soutenir l'étoile. Ses régions internes se contractent jusqu'à former une naine blanche, tandis que les couches externes expulsées par la pression de radiation donnent naissance à une nébuleuse planétaire.
La perte de masse des étoiles géantes rouges est perceptible dans un diagramme rayon-masse obtenu par les données astérosismiques, d'après lesquelles on peut distinguer les étoiles montant la première branche des géantes rouges de celles qui, passées par le sommet de la branche des géantes et l'épisode correspondant de perte de masse, se retrouvent sur le clump et brûlent l'hélium. Alors que les étoiles qui montent la branche ont des masses de 1 à 2 fois la masse du Soleil, celles du clump peuvent avoir des masses plus petites. C'est la signature de la perte de masse.
Evolution d'une supergéante
L'énergie gravitationnelle des étoiles les plus massives leur permet d'aborder la fusion des éléments les plus lourds.
L'examen d'un champ stellaire peut mettre en évidence des objets de très petit rayon mais très chauds, des naines blanches. Le contraste de luminosité avec une étoile de la séquence principale est très marqué.
Caractériser les naines blanches dans l'évolution stellaire : l'état de naine blanche constitue l'étape ultime de l'évolution des étoiles peu massives.
En l'absence de carburant nucléaire, l'hydrogène étant épuisé au centre de l'étoile, le noyau se contracte, pour atteindre une température centrale plus élevée par le processus de Kelvin-Helmholtz. L'étoile atteint le stage de naine blanche : blanche, car très chaude, et naine car réduite par rapport au rayon qu'elle avait sur la séquence principale.
Le rayon d'une naine blanche provient de l'équilibre entre la compression gravitationnelle et la pression de dégénérescence électronique, qui s'écrit :
Le rayon d'une naine blanche devient :
Ce rayon décroît avec la masse ! Pour une étoile de masse solaire, en s'appuyant sur un modèle précis, on trouve que le rayon est de l'ordre de 7000 km (soit environ 1/100 du rayon initial et de l'ordre de grandeur du rayon terrestre).
Dans ces conditions, la masse volumique d'une naine blanche de masse solaire atteint , ce qui représente environ 1 million de fois la masse volumique initiale.
Dans un système double, l'accrétion de la matière du compagnon par une naine blanche donne le phénomène de nova.
Difficulté : ☆ Temps : 15 min
Déterminer le champ gravitationnel d'une naine blanche de masse et de rayon .
[2 points]
Déterminer sa vitesse de libération.
[2 points]
Lorsque la masse du noyau de l'étoile dépasse , il arrive un stade de l'évolution où la pression de Fermi des électrons ne parvient plus à soutenir l'étoile.
Lorsque la masse d'une naine blanche croît, et donc avec un rayon de plus en plus petit, sa masse volumique et sa température croissent également. Il faut alors considérer les électrons comme relativistes. Leur pression, toujours définie comme flux de quantité de mouvement, devient dans ce cas (avec ) :
On en déduit l'expression de la pression de dégénérescence relativiste.
où représente la charge volumique, et le nombre de masse des atomes en présence.
L'équilibre de l'objet doit être réalisé entre la pression de dégénérescence relativiste et la compression gravitationnelle :
Ces 2 termes présentent la même dépendance en fonction du rayon : contrairement au cas classique, une diminution de rayon ne permet plus à la pression de Fermi de soutenir l'étoile. En revanche, la dépendance en fonction de la masse est en défaveur de la pression de Fermi : si la masse de l'objet devient trop importante, cette pression ne fait plus l'affaire pour soutenir l'étoile.
L'application numérique montre qu'au-delà de , l'étoile n'est plus soutenue. Un calcul plus précise donne pour cette masse limite, dite masse de Chandrasekhar, au-delà de laquelle l'étoile va s'effondrer faute du soutien de la pression de dégénérescence des électrons, la valeur :
Une étoile dont la masse du noyau central est supérieure à cette valeur s'effondre vers une étoile à neutrons.
Un objet simultanément très chaud (plusieurs centaines de milliers de Kelvin, soit bien plus qu'une étoile de la séquence principale) et très peu lumineux ne peut être, d'après la loi de rayonnement du corps noir, qu'extrêmement petit. C'est ainsi qu'ont été identifiées les étoiles à neutrons, rayonnant l'essentiel de leur énergie dans les domaines X et gamma.
Un pulsar (de l'anglais pulsating radio source) correspond à une étoile à neutrons dont on observe le rayonnement électromagnétique modulé par la rotation rapide. La rapidité de la période de rotation observée provient du très petit rayon de l'étoile à neutrons.
Le faisceau du pulsar correspond au rayonnement synchrotron des électrons accélérés le long des lignes de champ magnétique. C'est ce phénomène de pulsar qui a conduit à la découverte des premières étoiles à neutrons.
Décrire simplement cet objet hors du commun qu'est une étoile à neutrons.
L'existence des étoiles à neutrons a été supposée dès l'identification du neutron, comme résidus de supernova.
Au delà de la masse de Chandrasekhar, la pression de Fermi des électrons ne peut plus soutenir l'étoile. La contraction conduit les électrons à flirter intensément avec les protons. L'interaction nucléaire faible est alors sollicitée : elle transforme un proton et un électron en un neutron.
Néanmoins, la réaction de neutronisation :
est impossible au repos, car le bilan de masse ne lui est pas favorable. En effet, l'énergie de masse de l'électron (0.5 MeV) apparaît bien inférieure à la différence d'énergie de masse entre proton et neutron (1.3 MeV).
Néanmoins, lorsque les électrons deviennent relativistes, leur énergie totale peut dépasser ce niveau nécessaire de 1.3 MeV (atteint pour une vitesse de 0.92 c). La réaction de neutronisation devient alors possible. C'est cette condition sur la vitesse des électrons qui se traduit par le seuil de masse correspondant à la masse de Chandrasekhar.
Les neutrons, qui sont aussi des fermions, prennent la relève pour assurer l'équilibre de l'étoile. En effet, comme ils sont beaucoup plus massifs, ils ne sont pas relativistes, et leur pression de Fermi s'exprime comme :
Elle varie donc en fonction du rayon comme . On assiste alors à un nouvel équilibre, atteint pour un rayon bien plus petit que pour une naine blanche, en raison du facteur .
Ce nouvel équilibre se caractérise par un rayon, estimé en km :
Dans ces conditions, la masse volumique atteint des valeurs gigantesques :
On retrouve en fait la masse volumique de la matière nucléaire. L'étoile à neutrons est analogue à une noyau surdimensionné de nombre de masse .
De temps à autre, un point extrêmement brillant apparaît dans une galaxie lointaine. Un noyau stellaire s'effondre.
Chaque supernova sème dans le milieu interstellaire l'essentiel de son enveloppe stellaire.
Le passage d'une naine blanche à une étoile à neutrons s'accompagne d'une débauche d'énergie : une supernova de type II.
La réaction de neutronisation s'accompagne d'un effondrement de l'étoile :
La chute libre de l'objet qui se retrouve hors équilibre se déroule en une durée très brève,
de l'ordre de quelques secondes.
L'énergie mise en jeu lors de l'effondrement est gigantesque ; le rapport des rayons est tellement disproportionné que l'on peut écrire :
Soit une débauche de l'ordre de :
L'essentiel du pic lumineux est émis en un mois. Il s'ensuit qu'une supernova de type II rayonne durant ce laps de temps quasiment autant qu'une galaxie entière.
Une supernova de type I correspond à un autre événement violent, au sein d'une binaire évoluée où l'un des membres (la primaire) a déjà atteint le stade de naine blanche. Lorsque l'étoile secondaire atteint le stade de géante rouge, un violent transfert de masse peut se créer vers la primaire. Si le taux d'accrétion est suffisamment grand, la primaire atteint la masse limite de Chandrasekhar et finit par exploser en fusionnant carbone et oxygène jusqu'à former les éléments du pic du fer. Contrairement à une supernova de type II, aucun débris ne subsiste : la totalité des éléments produits va enrichir le milieu interstellaire.
Supernova | Type I | Type II |
Cause | accrétion | effondrement du cœur |
Magnitude absolue | -19.5 | -18.5 |
Spectre | métaux | hydrogène et continu |
Régions | systèmes stellaires âgés | régions de formation d'étoiles |
Précurseur | naine blanche dans un système binaire | étoile très massive |
Déclenchement | transfert de masse du compagnon | effondrement du cœur stellaire |
Mécanisme | explosion thermonucléaire du cœur carbone/oxygène qui fusionne pour former du fer | onde de choc de rebond de la surface de l'étoile à neutrons |
Résidu | rien | étoile à neutrons ou trou noir |
Débris expulsés | principalement du fer | tous les éléments lourds et beaucoup d'hydrogène |
Distinction entre supernova de type I ou II
Les trous noirs stellaires se cachent mieux que les trous noirs au centre d'une galaxie. De nombreux candidats trous noirs stellaire sont recensés. Leur observation reste difficile, associée en fait à des régions d'émissions très énergétiques, mais cachées car de très petit volume.
Le premier candidat, Cygnus X-1, fut découvert par le satellite Uhuru en lumière X.
Une étoile de masse centrale supérieure à environ 3 fois la masse du Soleil évolue vers le stade trou noir.
Le rayon d'une étoile à neutrons diminuant avec la masse
il s'ensuit une masse volumique et une vitesse de libération énormes. La limite correspond au rayon dit de Schwarzschild
.
Le stade de trou noir est atteint : le rayonnement est piégé par le champ gravitationnel. Un trou noir se signale alors par le formidable gradient de champ gravitationnel qu'il induit dans son entourage.
Pour arriver au stage de trou noir stellaire, une étoile doit au-moins posséder un noyau de masse centrale supérieure à 3 masses solaires. Ceci correspond à une masse progénitrice initialement bien plus élevée (), mais diminuée des pertes par vent stellaire.
Les étoiles les plus massives quittent la séquence principale alors même qu'elles ne sont pas sorties du nuage de matière interstellaire qui les a créées.
Un spectre stellaire montre une abondance de raies, avec la signature chimique de tous les éléments de la classification périodique. Ces éléments ont été pour l'essentiel créés lors de l'évolution des étoiles les plus massives, qui les essaiment sous l'influence d'un fort vent stellaire accéléré par la pression de radiation.
Un exemple d'étoiles avec fort vent stellaire est la classe des étoiles de Wolf-Rayet, de type spectral O, très chaudes. L'intense pression radiative souffle leur enveloppe d'hydrogène et génère une perte de masse importante. L'enveloppe très chaude d'une Wolf-Rayet produit un spectre en émission. La diversité des vitesses des couches sondées donne des raies très élargies par effet Doppler-Fizeau.
Aperçu sur les réactions nucléaires à l'oeuvre dans une étoile très massive.
Les hautes températures rencontrées durant les phases énergétiques de la fin de vie des étoiles les plus massives permettent la fusion des éléments jusqu'au fer. Ainsi, la synthèse triple conduit, à partir de 3 noyaux d'hélium, à un noyau de carbone.
La température d'ignition augmente avec le nombre de charge des réactifs de la fusion. En revanche, les réactions sont de moins en moins exothermiques, jusqu'au fer.
Etape | Température (K) | Masse volumique (kg/m3) | Durée |
---|---|---|---|
Fusion H | 5000 | ans | |
Fusion He | ans | ||
Fusion C | 600 ans | ||
Fusion O | 6 mois | ||
Fusion Si | 1 jour | ||
Effondrement du cœur | 1/4 s |
Les étapes de fusion sont de plus en plus courtes, et à forte température.
Au delà du fer (Z=26, A =56), le bilan des énergies de liaison entre nucléons est défavorable : d'exothermique, la fusion devient endothermique. La forte stabilité du noyau du fer conduit à son pic d'abondance.
Les éléments plus lourds que le fer résultent de phénomène d'addition de neutrons, transmuant des noyaux déjà massifs en éléments encore plus massifs (plomb, or, jusqu'à l'uranium). La lenteur du processus, et les conditions thermodynamiques défavorables, expliquent la faible abondance relative de ces éléments plus lourds que le fer.
La pression de radiation générée par les températures élevées conduit à un fort vent stellaire, qui souffle l'enveloppe extérieur (comme pour les étoiles Wolf-Rayet par exemple), et donc conduit à essaimer les matériaux lourds synthétisés dans la forge stellaire. Peu à peu, l'Univers s'enrichit en éléments plus lourds que l'hydrogène et l'hélium créés lors du big-bang.
pages_mort/naine-blanche-sevaluer.html
Voir le cours sur les lois de Newton.
Voir le cours.