Les points de Lagrange : un cas particulier du problème à 3 corps, où l'un des 3 corps est de masse négligeable devant les 2 autres.
Dans le référentiel tournant avec les 2 corps massifs, le potentiel résultant de la combinaison des potentiels gravitationnels et rotationnel présente 3 extrema sur la droite contenant les 2 corps. L'un de ces maxima se situe entre les 2 corps, ce que l'on attend intuitivement.
Deux autres maxima se trouvent sur la droite reliant les 2 objets, mais de part et d'autre ...ce qui est plus surprenant. Ils proviennent en fait de la contribution au potentiel du référentiel tournant.
Dans le plan orbital, les équipotentielles du champ montrent 5 point d'équilibre.
Trois de ces points (L1, L2 et L3) sont des selles. L4 et L5 sont des maxima.
Détermination du champ gravitationnel au voisinage des points de Lagrange, pour le système Soleil-Terre.
Illustrer le problème à N-corps dans un cas particulier : 3 corps, dont 1 de masse négligeable devant les 2 autres. Dans ce cas, on ne considère que le champ gravitationnel des 2 corps massifs.
Le problème à 3-corps est insoluble analytiquement dans le cas général. L'astronome mathématicien Joseph-Louis Lagrange en a proposé une solution dans un cas particulier, où l'un des corps est de masse négligeable devant les 2 autres, et subit leurs champs gravitationnels.
Les 2 corps massifs sont supposés en orbite circulaire ; on note la vitesse angulaire de rotation. Le potentiel gravitationnel créé par ces 2 corps est étudié dans le référentiel tournant avec les 2 corps, supposés en orbite circulaire. Les notations sont définis ci-joint.
Le corps de masse négligeable subit le potentiel :
avec les masses respectives des 2 corps massifs, les distances du système aux 2 corps, la distance à leur barycentre, et la vitesse angulaire de rotation des 2 corps. Le dernier terme est introduit par le référentiel tournant.
En posant le rapport des masses , et en notant la plus forte des masses, on obtient :
en ayant introduit la 3e loi de Kepler pour les 2 corps massifs : .
Le gradient de potentiel s'annule en des points particuliers : les points de Lagrange. Leur étude peut être menée analytiquement, mais l'on se contente ici de constater les résultats.
Ces points se situent dans le plan orbital des 2 corps. Les points L1, L2 et L3 sont alignés avec les 2 corps, et L4 et L5 forment avec eux 2 triangles équilatéraux.
Il faut noter que les positions d'équilibre trouvées ne sont pas statiquement stables : ils correspondent en effet à des maximum de potentiel, ou des selles. C'est dynamiquement, avec l'appoint de la force de Coriolis (le référentiel est tournant !) que les points L4 et L5 deviennent stables... et sont occupés par des satellites naturels ou artificiels.
Les animations proposées parcourent les équipotentielles du potentiel dans le référentiel tournant associé au problème de Lagrange, pour différents rapports de masse : 1, 3, 10.
Le balayage des équipotentielles remonte des potentiels les plus négatifs, autour des 2 corps, vers les potentiels croissants. L'animation met en évidence les points de Lagrange, à la jonction de différentes nappes équipotentielles.
L'étude de la stabilité des points de Lagrange n'est pas simple. Il est bienvenu d'exprimer le lagrangien du système, et de faire une analyse par perturbation... ce qui est hors de la portée de ce cours.
Les figures ci-jointes, réalisées par des étudiants du Master professionnel Outils et Systèmes de l'Astronomie et de l'Espace lors d'un projet d'analyse numérique, dévoilent la complexité de l'analyse.
Les astéroïdes troyens sont sur la même orbite que Jupiter, soit en avance de sur Jupiter (point L4), soit en retard de (point L5).
Pour observer continûment le Soleil, le point L1 est idéal. Il tourne autour du Soleil avec la Terre, avec le Soleil en permanence d'un côté et la Terre au côté opposé. C'est donc en L1 qu'a été logiquement installée la sonde SOHO, dédiée à l'observation du Soleil.
En revanche, s'il s'agit d'observer l'Univers froid, mission du satellite Planck, c'est le point L2 qui est idéal. Il tourne avec la Terre, avec le Soleil et la Terre en permanence opposés à la direction de visée. C'est donc en L2 qu'est installé Planck, et que sera le télescope spatial JWST, successeur de Hubble.
L'étude de la stabilité dynamique autour de L4 ou L5 relève d'une approche numérique. Cette dernière montre que le rapport des deux masses doit être assez élevé (contraste plus grand que ) pour permettre la stabilité.
C'est la force de Coriolis, qui apparaît dans le référentiel tournant, qui stabilise les objets autour de L4 ou L5. Elle correspond à une accélération :
avec la vitesse angulaire de rotation, perpendiculaire au plan orbital des deux corps massifs, et la vitesse relative dans le référentiel tournant. Ce rôle stabilisateur est très brièvement illustré en exercice.
Comme L4 et L5 sont dynamiquement stables, on y trouve de nombreux objets.
Difficulté : ☆☆ Temps : 45 min
Représenter l'allure du potentiel gravitationnel local autour de L4 dans le référentiel tournant avec les 2 corps, sachant qu'il y présente un maximum.
Montrer que toute composante de vitesse s'éloignant radialement de L4 donne un terme de Coriolis conduisant à un mouvement de rotation autour de L4.
Montrer que toute composante de vitesse orthoradiale autour de L4 conduit à un terme de Coriolis radial. Déterminer le seul sens de rotation possible pour une orbite stable.
pages_points-lagrange/stabilite-dynamique-sexercer.html
Tracer une coupe selon une direction, puis l'autre, sachant que L4 est un sommet
Le potentiel est d'allure parabolique. L4 est un maximum.
L'allure de la courbe de potentiel est :
Munir le plan orbital d'un repère cartésien s'appuyant sur L4, et donner la direction du vecteur rotation par rapport à ce plan
La composante de Coriolis s'écrit .
Etant perpendiculaire à la rotation, elle est nécessairement dans le plan orbital. Etant également perpendiculaire au mouvement, supposé radial, elle est nécessairement orthoradiale : elle va induire un mouvement de rotation autour de L4.
Il est nécessaire que cette composante de vitesse, radiale, soit de plus dirigée vers L4.
La composante de Coriolis s'écrit .
Toujours perpendiculaire à la rotation, elle reste nécessairement dans le plan orbital. Etant également perpendiculaire au mouvement, supposé orthoradial, elle est nécessairement radiale.
Afin que cette composante radiale agisse telle une force de rappel vers L4, un seul sens de rotation est possible : vérifier qu'il s'agit d'une rotation dans le même sens que la rotation orbitale.