Ressources libres - Lumières sur l’Univers
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Travaux Pratiques

Conclusion

Auteur: Noël Robichon

conclusionConclusion

C'est Aristarque de Samos (310-230 avant J.-C.) qui utilisa le premier les éclipses de Lune pour calculer la distance de la Lune et sa taille, relatives à la taille de la Terre. Hipparque (190-120 avant J.-C.) puis Ptolémée (120-180 après J.-C.) améliorèrent cette méthode de sorte que les astronomes anciens avait une bonne idée de ces grandeurs. Aristarque et de nombreux astronomes jusqu'au 17 ème siècle, mesurèrent également la distance du Soleil en mesurant l'angle que faisait la Lune avec le Soleil lors du premier ou du dernier quartier. Mais cette méthode, bien que rigoureusement exacte du point de vue géométrique, était en réalité inapplicable et donnait une distance 20 fois trop petite de sorte que, jusqu'au 17ème siècle, la distance de la Lune fut la seule distance astronomique connue avec une certaine précision. L'avènement des lunettes et télescopes permis ensuite de mesurer précisément des angles plus petits et de déterminer la parallaxe diurne des planètes proches et d'en déduire la distance du Soleil. De nos jours, la distance de la Lune est mesurée avec des radars ou des lasers dont la lumière est réfléchie par des petits miroirs posés sur le sol lunaire par les missions Apollo.

Les méthodes présentées ici permettent de déterminer la distance de la Lune à quelques dizaines de pourcents près, en supposant que la Lune et la Terre ont des orbites circulaires. En réalité, les excentricité de l'orbite de la Terre (e=0,017) et de celle de la Lune (e=0,05) font varier la taille de l'ombre de la Terre et le diamètre apparent de la Lune respectivement. De plus, l'excentricité de l'orbite de la Lune est telle que la distance Terre-Lune varie de 7 pourcents (de 356 400 à 406 700 km) autour de sa valeur moyenne (384 401 +/- 1 km).

Page précédentePage suivante